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Abstract. These are informal notes based on lectures I am giving in MAT 626
(Topics in Complex Analysis: the Riemann mapping theorem) during Fall 2008 at
Stony Brook. We will start with brief introduction to conformal mapping focusing
on the Schwarz-Christoffel formula and how to compute the unknown parameters.
In later chapters we will fill in some of the details of results and proofs in geometric
function theory and survey various numerical methods for computing conformal
maps, including a method of my own using ideas from hyperbolic and computational
geometry.
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Preface

These are very rough and very incomplete notes related to Riemann mapping

theorem, although my hope is to make them less rough and more complete as time

goes on. They are written with three goals:

(1) give an introduction to the mapping theorem appropriate to advanced un-

dergraduates and beginning graduate students,

(2) briefly describe various numerical schemes for computing conformal maps

and give some of the required background to implement these methods

(Gauss quadrature, FFTs, fast multipole, numerical linear algebra, . . . ),

(3) serve as an introduction to some of my own work relating hyperbolic and

computational geometry to conformal mappings.

There are various excellent books on the Riemann mapping theorem, harmonic

measure and geometric function theory, such as those of Pommerenke and Garnett-

Marshall, and I have tried to stay away from topics covered in those sources. Mostly,

these notes contain material which I learned in the last few years and which I probably

should have known much earlier. Very little here is new, and some of it is very well

known, but I hope there is some value in putting everything together.

As of this writing, the first three chapters form an introduction to the Riemann

mapping theorem, the Schwarz-Christoffel formula and a few methods for computing

conformal maps onto polygons. I have used this material for a semester long under-

graduate seminar (where the last few weeks were devoted to students reseaching and

presenting additional material). These chapters require a lot of polishing, but the

content is more or less complete.

The next few chapters are intended to discuss iterative methods for computing

the parameters in the Schwarz-Christoffel formula. I choose to measure the accuracy

of the current guess using the quasiconformal distortion needed to map the guessed

n-tuple to the correct one, so there will be a chapter introducing quasiconformal maps

1



PREFACE 1

(especially self-maps of the disk). Then a chapter on Davis’s method and the CRDT

method of Driscoll and Vavasis, followed (I hope) by a method of my own based on

the medial axis of the domain.

Later chapters will discuss other methods dues to Symms, Fornberg, Wegman,

Stein and Kerzman. These exist in rough form. Eventually I also hope to have

descriptions of the circle packing approach (covered in greater detail by Stephenson’s

book) and Marshall’s Zipper algorithm I would also like to have an introduction to

conformal welding, the uniformization theorem and some higher dimensional results.

However, none of this material is written yet, although I have optimistically included

these headings in the table of contents.

I apologize for the numerous mistakes currently in the notes and its various other

shortcomings (e.g., no references yet). Please feel free to inform me of particularly

appalling oversights, such as not mentioning your obviously relevent work (or men-

tioning your work, but not your name). Other comments, suggestions and questions

are also welcome.

Chris Bishop

Stony Brook, NY

January, 2010





CHAPTER 1

Introduction to conformal mapping

In this chapter we introduce conformal maps with an emphasis on the Schwarz-

Christoffel formula. We discuss several ideas including Möbius transformations, con-

formal invariants, crowding, domain decompositions and quasiconformal maps which

will be explored in greater depth in later chapters.

1. Conformal and holomorphic maps

A conformal map between planar domains is a C1, orientation preserving diffeo-

morphism which preserves angles. Write f(x, y) = (u(x, y), v(x, y)). We can compute

it derivative matrix

Df =

(
ux uy
vx vy

)
.

Since f preserves orientation and angles, the linear map represented by this matrix

must be an orientation preserving Euclidean similarity. Thus it is a composition of a

dilation and rotation and must have the form(
a b
−b a

)
=

(
r 0
0 r

)(
cos θ sin θ
− sin θ cos θ

)
,

which implies

ux = vy, uy = −vx.
These are known as the Cauchy-Riemann equations. Thus f is conformal if it is C1

diffeomorphism which satisfies the Cauchy-Riemann equations.

The simplest examples are the Euclidean similarities, and indeed, these are the

only examples if we want maps R2 → R
2. However, if we consider subdomains of R2,

then there are many more examples. The celebrated Riemann mapping theorem says

that any two simply connected planar domains (other that the whole plane) can be

mapped to each other by a conformal map. We will give a more precise statement

of this later and will eventually give a proof of the result, but for the present we

introduce some notation and a few more examples.

3



4 1. INTRODUCTION TO CONFORMAL MAPPING

f
θθ

Figure 1. A conformal map preserves angles (and orientation).

After the linear maps, the next easiest conformal maps are quadratic polynomials.

If we take

f(x, y) = (u(x, y), v(x, y)) = (x2 − y2, 2xy),

then we can easily check that

Df(x, y) =

(
ux uy
vx vy

)
=

(
2x −2y
2y 2x

)
,

so the Cauchy-Riemann equations are satisfied. The map is not conformal on the

plane since f(−x,−y) = f(x, y) is 2-to-1 for (x, y) 6= (0, 0) and Df vanishes at

the origin. However, it is a conformal map if we restrict it to a domain (an open,

connected set) where it is 1-to-1, such as the open square [0, 1]2. The map sends

this square conformally to a region in the upper half-plane. See Figure 5. Note that

angles are doubled at the origin; we do not require that a conformal mapping of a

domain preserve angles at boundary points and this map does not.

By this point, anyone who has had a course in complex analysis will have recog-

nized the map f as complex squaring. We identity R
2 with the complex numbers C

by writing a real 2-vector (x, y) as a single complex number z = x+ iy. The complex

numbers form a field under the usual addition

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

and multiplication defined using the relation i2 = −1 as follows

z1z2 = (x1 + iy1)(x2 + iy2)

= x1x2 + ix1y2 + ix2y1 + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + x2y1).
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Complex squaring is then

z2 = (x+ iy)2 = (x2 − y2) + i2xy,

which is the map described earlier.
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Figure 2. This illustrates the map z → z2 or (x, y) → (x2−y2, 2xy).
The top left shows a grid in the square [0, 1]2. The top right shows the
image under squaring map.

Complex multiplication is easier to understand in polar coordinates. Let r =

|z| =
√
x2 + y2 denote the distance from z to the origin and let θ = arg(z) be the

angle so that x = r cos θ, y = r sin θ. Note that if θ is a possible value of arg(z),

then so is θ + 2πn for any integer n. In order to make arg(z) a function, we need to

restrict to a single value, so we often choose θ ∈ (−π, π]. This is the principal branch
of arg and is denoted Arg(z). . Note that it has a jump discontinuity along the

negative real axis. It is often convenient to choose other branches of arg which have

discontinuities along a different ray, or possibly a curve connecting 0 to ∞. Given

any simply connected domain Ω ⊂ C which does not contain 0, we can always choose

a continuous branch of arg(z) that is defined in Ω.

Lemma 1. Suppose Ω is a simply connected plane domain which does not contain

the origin. Then there is a continous branch of arg(z) defined on Ω, i.e., there is a

continuous function f(z) so that exp(log |z|+ if(z)) = z.
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Proof. This “proof” is simply a reference to a standard result about topology.

Consider eit : R → T as a covering map. Note that g(z) = ei arg(z) is a continuous

map Ω → T. Since Ω is simply connected, there is a lifting of g to a map f : Ω → R,

i.e., a map so that g(z) = eif(z). Thus f is the desired branch. See Chapter 5 for

more about covering maps and some standard references. �

0

z

w

Ω

Figure 3. The points z and w lie on the same ray through the origin,
but a continuous branch of arg on Ω will give z a value 2π larger than
the value for w.

Define

ez = ex+iy = ex(cos y + i sin y)

and

log(z) = log |z|+ i arg(z), if z 6= 0.

The exponential functions satisfies the Cauchy-Riemann equations and the partials

are never zero, so this function is conformal on any domain where it is 1-to-1. It is

not 1-to-1 on the whole plane because ez+2πi = ez; each point except the origin has

infinitely many preimages arranged along a vertical line. Each vertical line is mapped

to a circle centered at the origin and teach horizontal line is mapped to a ray from 0

to ∞. See Figure 5. The logarithm is a branch of the inverse of this map; it sends

rays to horizontal lines and circular arcs centered at the orgin to vertical lines.

A complex number z can be written as z = reıθ where r = |z| and θ = arg(z).

This is the polar coordinates form of a complex number. When we multiply two

complex numbers the absolute values multiply and the arguments add, i.e.,

z1z2 = (r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2).
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Figure 4. The same square grid of [0, 2]2 and its image under ez.
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Figure 5. This illustrates the exponential map again. We take the
image of [0, 2] × [0, 6]. The line at height 2π will be mapped into the
positive real axis. The top edge of the grid is just below this, so the
image stops just before it reaches the axis.

This explains why the angle doubles at the origin in Figure 5. If we consider the

maps z3 and z1/2, then angles at the origin will multiply by 3 and 1
2
respectively, as
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shown in Figure 5. In general we define

zα = eα log z = eα(log |z|+i arg(z))eα(log |z|+iArg(z)+2πiZ).

If α is an integer then this the various possible valuesof arg(α) all give the same

value of zα. If α = p/q then there are q possible different values. Otherwise, zα has

infinitely many possible values. Moreover, some caution is needed when applying the

rules of exponents. Consider

1 =
√
1 =

√
(−1)(−1) =

√
−1

√
−1 = i · i = −1.

The problem is that
√
1 and

√
−1 each have two possible values and by choosing the

wrong we can arrive at an apparent contradiction.
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Figure 6. The images of [0, 1]2 under z3 and z1/2. These are all
conformal maps of the square, but are not conformal at the origin
(which is a boundary point).

A complex function of a complex variable is differentiable if

f ′(z) = lim
h→0

f(z + h)− f(z)

h
,

exists. Here h can approach the origin in any way whatsoever. Two special ways of

approaching are along the real or imaginary axes, which lead to the equations

f ′(z) = lim
h→0

u(x+ h, y) + iv(x+ h, y)− u(x, y)− iv(x, y)

h
= ux + ivx,

f ′(z) = lim
h→0

u(x, y + h) + iv(x, y + h)− u(x, y)− iv(x, y)

ih
= −iux + vx.

Cauchy-Riemann equations. Conversely, is these partials exist, are continuous in a

neighborhood of z and satisfy the Cauchy-Riemann equations, then f ′ exists and
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Figure 7. The images of [0, 1]2 under z4 and z4.5. In the first the
segment [0, 16] is part of the boundary, not the interior of the dommain.
For powers > 4, the map is no longer 1-to-1 and the image intersects
itself.

equals ux+ ivx. Continuity is required because examples like xy/(x2 + y2) show that

a function can have partial derivatives at 0, but not even be continuous there. But

if the partials exist and are continuous in neighborhood of a point, then results from

calculus imply it is approximated by the linear map Df , i.e., if h = s+ it, then

f(z + h)− f(z) = (uxs+ uyt) + i(vxs+ vyt) + o(|h|) = (ux + ivx)h+ o(|h|),(1)

which implies f is differentiable with derivative ux + ivx.

This is the first time we have used the “little-oh” notation, so perhaps we should

explain it. The term o(|h|) refers to term which is going to zero faster than |h| as
|h| → 0. Equation (1) means that for every ǫ > 0 there is a δ > 0 so that if |h| ≤ δ,

then

|f(z + h)− f(z)− (ux + ivx) · h| ≤ ǫh.

However, it is quicker and more convenient to write (1). Note that o(1) stands

for a term that tends to zero as the relevant parameter tends to its limit. Thus

o(h) = o(1) ·h. The “big-Oh” notation O(1) stands for a term that remains bounded

as the relevant parametet tends to its limit. For example, O(|x|) as |x| → ∞ stands

for a term that is bounded by C|x| fore some fixed C <∞ as |x| grows.
The reader should now check that (ez)′ = ez and (log z)′ = 1/z (on an region

where log is defined and continuous). The usual rules of differentiation hold:

(f + g)′ = f ′ + g′, (fg)′ = f ′g + fg′, (f/g)′ = (f ′g − fg′)/g2, (f ◦ g)′ = (f ′ ◦ g)g′.
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which implies the complex derivative exists. Therefore polynomials and rational

functions are differentiable (at least at points where we don’t divide by zero).

A power series is an infinite series of the form
∞∑

n=0

an(z − z0)
n.

we say it converges at z if the sequence of partial sums has a finite limit, i.e.,

f(z) = lim
N→∞

N∑

n=0

an(z − z0)
n,

exists. Such a series obviously converges at z = z0. More generally, there is a radius

of convergence R (R = 0,∞ are possible) where

1

R
= lim sup

n→∞
|an|1/n,

and the series converges inside {z : |z − z0| < R} and diverges in {z : |z − z0| > R}.
The series might or might not converge at various boundary points of the disk; this

depends on the particular coefficients. When a power series converges, it defines a

continuous function on the open disk of convergence and this function is complex dif-

ferentiable. If it is also 1-1, then it is a conformal map of the disk. More surprisingly,

if f is a conformal map of an open disk, then f has a power series converging to it

in this disk. We will prove this in the next few pages, but first need to introduce

complex integrals and the Cauchy integral theorem.

A curve is continuous map γ : [a, b] → C. We also call the compact set Γ =

γ([a, b]) a curve, although technically this should be called the trace of γ. A curve γ

is rectifiable if there is a M <∞ so that

sup
P

n∑

k=1

|γ(xk−1)− γ(xk)| ≤M,

for every finite ordered set P = {a = x1 < · · · < xn+1 = b} ⊂ [a, b]. The smallest

such upper bound is the length of γ, denoted ℓ(γ). P is called a parition of [a, b]

and ‖P‖ = maxk |xk+1 − xk| denotes the size of the largest gap between consequtive

points.

Felix Klein was quoted in [] as saying “Everyone knows what a curve is, until he

has studied enough mathematics to become confused through the countless number

of possible exceptions.” Figures 5 and 5 show two such possible exceptions.
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Figure 8. A curve is continuous image of a closed interval. A Jordan
curve is a 1-to-1 image (no self-intersecting), and a closed Jordan curve
has γ(b) = γ(a). A rectifiable curve is one where inscribed polygons
have uniformly bounded length.

Figure 9. The top row shows four generations of the construction of
the von Koch snowflake, a closed Jordan curve that is not rectifiable.
The bottom row shows four generations of a variation of the snowflake.
In this case the limiting curve covers an open set, i.e., is a type of Peano
curve.

If γ maps into a domain Ω and f is a continuous function on Ω, we define the

integral of f along γ as
∫

γ

f(z)dz = lim
‖P‖→0

n∑

k=1

f(γ(xk))(γ(xk+1)− γ(xk)),

where the limit is taken over paritions as the maximum gap tends to zero. If f is

continuous and γ is rectifiable, then it is easy to see that this limit exists. If γ is
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piecewise C1, we sometimes write
∫
Γ
f(z)dz, instead of

∫
γ
f(z)dz. This is permissible

since one can show that two different parameterizations of Γ (with the same starting

and ending points) give the same integral. The following estimate is obvious, but

very useful:

Lemma 2.
∫
γ
f(z)dz ≤ maxγ |f | · ℓ(γ).

If γ is differentiable, this definitions agrees with the idea of a line integral in

calculus:

Lemma 3. If γ is a C1 curve then
∫

γ

f(z)dz =

∫ b

a

f(γ(x))γ′(x)dx,

(where γ′ is interpreted as a complex number instead of a 2-vector).

Proof. The two integrals are limits of Riemann sums of the form
∑

f(zk)(zk+1 − zk),
∑

f(zk)γ(xk)(xk+1 − xk),

and since (zk+1 − zk) = (xk+1 − xk)γ
′(xk) + o(1), the result follows. �

An important consequence is the following equality: if γ(t) = reit maps [0, 2π]

onto a circle of radius r, then ∫

γ

1

z
dz = 2πi.

To see this, we simply compute the left hand side as
∫ 2π

0

1

r
e−itrieitdt = i

∫ 2π

0

dt = 2πi.

Lemma 4. Suppose f is continuous and f = F ′ for some complex differentiable

F on Ω. Then we claim that∫

γ

f(z)dz = F (γ(b))− F (γ(b)).

Proof. To prove this consider a partition P = {x1 < . . . xn+1} and let zk =

γ(xk). Since γ has compact image and f is continuous, it is uniformly continuous on

Γ = γ([a, b]). Hence

|f(z)− f(w))| ≤ o(1)



1. CONFORMAL AND HOLOMORPHIC MAPS 13

unifromly as ‖P‖ → 0 and thus

F (z) = F (w) + (z − w)f(w) + o(|z − w|),
for every w ∈ Γ. Since γ is uniformly continuous, if the gaps in our partition are

small enough then γ([xk+1mxk]) ⊂ D(zk, r). Thus
∫

γ

f(z)dz =
n∑

k=1

f(γ(xk))(zk+1 − zk) + o(1)

=
n∑

k=1

[F (zk+1)− F (zk)] + o(
∑

k

|zk+1 − zk|) + o(1)

= F (zn+1)− F (z1) + ø(ℓ(γ)) + o(1),

which gives the desired equality. In particular if γ is a closed curve, i.e., γ(a) = γ(b),

then
∫
γ
f(z)dz = 0. �

Lemma 5. If f is conformal on a domain Ω and γ is a closed rectifiable curve in

D(z, r) ⊂ Ω then
∫
γ
f(z)dz = o(rℓ(γ)).

Proof. Since constants and linear functions of z are derivatives of other func-

tions, the integral of one of these around a closed curve is zero. So if γ ⊂ D(z0, r)

and

f(z) = f(z0) + f ′(z0)(z − z0) + o(|z − z0|),
then ∫

γ

f(z)dz = f(z0)

∫

γ

dz + f ′(z0)

∫

γ

(z − z0)dz +

∫

γ

o(|z − z0|)dz

= 0 + 0 + o(r)ℓ(γ).

�

We say a domain Ω is decomposed in subdomians {Ω} if each Ωk ⊂ Ω, they

are pairwise disjoint and Ω = ∪kΩk ∩ Ω. Right now, we are only interested in

decompositions of peicewise C1 domains into finitely many piecewise C1 subdomains,

as illustrated in Figure 10. Note that if f is continuous on the closure of Ω, then∫

∂Ω

f(z)dz =
∑∫

∂Ωk

f(z)dz,

becuase each arc of ∂Ωk which is interior to Ω is also a boundary arc of another

domain, but with the opposit orientation. Thus these integrals cancel. The only
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parts of the integrals on the right that don’t cancel are the one on the boundary of

Ω, and they sum to the integral on the left. Technically, we should write
∫
γ
instead

of
∫
∂Ω

where γ is a parameterization of ∂Ω, but the integral is independent of the

particular parameteriation, so this abuse of notation is reasonable.

Figure 10. Decomposing a domain means breaking it into smaller
domains. We will only be interested in decompositions of piecewise
smooth domains into finitely many piecewise smooth domains with
small diameter. For a piecewise C1 curve this can be done by inter-
secting with a standard ǫ-grid, although more irregular decompositions
are also allowed.

Lemma 6. Suppose γ ⊂ Ω is a closed Jordan curve which bounds a region which

can be decomposed into O(ǫ−2) many regions each with boundary length ≤ ǫ. Suppose

f has a continuous complex derivative on Ω. Then
∫
γ
f(z)dz = 0.

Proof. The integral around the boundary of each subpiece is o(ǫ2) and there are

O(ǫ−2). Thus the sum of these integrals tends to zero as ǫ → 0. The sum is always

equal to
∫
γ
f(z)dz, so the lemma is proved. �

Lemma 7. Suppose f is holomorphic on a neighborhood of a closed disk D =

D(0, r) and |z| < r. Then

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw,

where γ(t) = z0 + reit maps [0, 2π] to the boundary of D

Proof. Choose ǫ so 0 < ǫ < (r − |z|)/2 and let S be a line segment connecting

the circles Cǫ = {w : |z−w| = ǫ} to Cr = {w : |w| = r}. Let γ be the curve consisting

of four parts: traversing Cr one time in the counterclockwise direction, along S from
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Cr to Cǫ, around Cǫ once clockwise and finally along S from Cǫ to Cr. This curve

bounds a slit annulus and can clear be decomposed as in Lemma 6, so the integral

of f around γ is 0. The integrals over the two line segments cancel, so the integrals

over the inner and outer circle also cancel. We rewrite the inner integral as
∫

f(w)

w − z
dw =

∫
f(z)− f(0)

w − z
dw +

∫
f(0)

dw

w − z
.

By an earlier computation the second integral on the right is 2πif(0). The first is

bounded by sup|w|=ǫ |f(w) − f(0)| which tends to zero as ǫ → 0. This proves the

lemma. �

Figure 11. The curve used in the proof of Lemma 7.

If we differentiate both sides of the Cauchy integral formula we get

f ′(z) =
1

2πi

∫

γ

f(w)

(w − z)2
dw.

Pulling the differentiation inside the integral is justified because

lim
h→0

f(z + h)− f(z)

h
=

1

2πi
lim
h→0

∫

γ

f(w)
1

h
[

1

w − z − h
− 1

w − z
dw

=
1

2πi

∫

γ

f(w) lim
h→0

1

(w − z)(w − z − h)
dw

=
1

2πi

∫

γ

f(w)

(w − z)2
dw

and the convergence is uniform on γ (and hence the integral of the limit is the limit

of the integrals). This formula for f ′ implies

Corollary 8 (The Cauchy Estimate). If f is holomorphic on D(z, r) and |f | is
bounded by M on the disk, then |f ′(z)| ≤M/r.
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This will be useful in Chapter 5 when we want to show that holomorphic maps

into the unit disk form an equicontinuous family. Similar estimates can be proven for

higher derivatives of f . One of the most important consequences is:

Theorem 9 (Liouville’s Theorem). If f is bounded and holomorphic on the whole

plane then f is constant.

Proof. By Cauchy’s formula

|f ′(z)| = |
∫ 2π

0

f(z +Reiθ)
iReiθdθ

(Reiθ)2
| ≤ max

C

|f |2π
R

→ 0,

as R → ∞. Thus f ′ = 0 everywhere. �

In particular, there cannot be any conformal map of the whole plane to the

unit disk, for this would define a non-constant, bounded holomorphic function on

the plane. Thus when Riemann’s theorem states that every simply connected region,

except the plane, can be conformally mapped to the disk, it is making the sharpest

possible claim.

Next we want to compute power series for holomorphic functions. The most

important example is the geometric series

∞∑

n=0

zn = 1 + z + z2 + z3 + · · · = 1

1− z
.

The derivation is exactly the same as for real numbers in calculus. Suppose

1 + z + · · ·+ zn = S.

Then

z + z2 + . . . zn+1 = zS,

so subtracting gives

1− zn+1 = S − zS = S(1− z),

S =
1− zn+1

1− z
,

1 + z + z2 + · · ·+ zn =
1− zn+1

1− z
.(2)
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For |z| < 1 we have zn+1 → 0, which proves the result. Also note that if we differen-

tiate (2) we get

0 + 1 + 2z + · · ·+ nzn−1 =
−(n+ 1)zn(1− z) + (1− zn+1)

(1− z)2
.(3)

For |z| < 1 the terms zn and zn+1 tend to zero, so

∞∑

n=1

nzn−1 = 1 + 2z + 3z2 + 4z3 + · · · = 1

(1− z)2
.

The closely related function

z

(1− z)2
= z + 2z2 + 3z3 + . . . ,

is called the Koebe function and has an important place in the history of geometric

function theory.

Lemma 10. If f is holomorphic on a neighborhood of the closure of D = D(0, r)

then f has a power series centered at 0 that converges in D.

Proof. Let γ be the curve that traverses ∂D once in the counterclockwise direc-

tion. Let z ∈ D. Then

f(z) =
1

2πi

∫

γ

f(w)

w − z
dw

=
1

2πi

∫

γ

f(w)
1

w
[
∞∑

n=0

(
z

w
)n]dw

=
∞∑

n=0

[
1

2πi

∫

γ

f(w)

wn+1
dw]zn

=
∞∑

n=0

anz
n.

The infinite sum and integral can be exchanged because the sum is absolutely and

unifromly convergent for |z| < |w| (see Appendix D. Note that |an| ≤ maxγ |f |·r−n−1,

so the radius of convergence is ≥ r. �

Lemma 11. If f(z) =
∑∞

n=0 anz
n is defined by a convergent power series in

D(0, r), then f is holomorphic and f ′(z) =
∑∞

n=1 nanz
n−1 in D(, r)
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Proof. We compute the derivative by taking quotients

f ′(z) = lim
h→0

1

h
[f(z + h)− f(z)]

= lim
h→0

1

2πih

∫

γ

f(w)

w − z
− f(w)

w − z − h
dw

= lim
h→0

−1

2πi

∫

γ

f(w)

(w − z)(w − z − h)
dw

=
−1

2πi

∫

γ

f(w)

(w − z)2
dw,

where we have used uniform convergence to justify passing the limit through the

integral. Next use (3).

f ′(z) =
1

2πi

∫

γ

f(w)
1

w
[
∞∑

n=1

n(
z

w
)n−1]dw

=
∞∑

n=1

n[
1

2πi

∫

γ

f(w)

wn+1
dw]zn−1

=
∞∑

n=1

nanz
n−1.

�

From the power series formula one can derive an = f (n)(0)
n

, where f (n) denotes the

nth derivative of f and n= 1 · 2 · 3 · · ·n. Some important examples are

ez =
∞∑

n=1

1

n
zn,

(1 + z)α =
∞∑

n=0

α(α− 1) · · · (α− n+ 1)

n
zn.

Thus every holomorphic function on the unit disk has a power series expansion

and hence every conformal map does. While its easy to determine which power series

correspond to holomorphic functions (lim sup |an|1/2 ≥ 1) it is probably impossible

to give a concise characterization of the series corresponding to 1-to-1 holomorphic

functions (e.g., conformal maps). One of the most famous problems in complex

analysis was the Beierbach conjecture that if f is 1-1 and holomorphic on D with

|f ′(0)| = 1, then

|an| ≤ n.
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Sharpness is shown by the Koebe function mentioned earlier. The conjecture was

proven in 1984 by Louis deBrange in a technical tour-de-force, later simplified by

other authors. Similar questions for related collection of maps still remain open.

2. Möbius transformations

A linear fractional transformation (or Möbius transformation) is a map of the form

z → (az + b)/(cz + d). This is a 1-1, onto, holomorphic map of the Riemann sphere

S = C∪{∞} to itself. The non-identity Möbius transformations are divided into three

classes. Parabolic transformations have a single fixed point on S and are conjugate to

the translation map z → z+1. Elliptic maps have two fixed points and are conjugate

to the rotation z → eitz for some t ∈ R. The loxodromic transformations also have

two fixed points and are conjugate to z → λz for some |λ| < 1. If, in addition, λ is

real, then the map is called hyperbolic.

Given two sets of three distinct points {z1, z2, z3} and {w1, w2, w3} there is a

unique Möbius transformation that sends wk → zk for k = 1, 2, 3. This map is given

by the formula

τ(z) =
w1 − ζw3

1− ζ
,

where

ζ =
(w2 − w1)

(w2 − w3)

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
.

A Möbius transformation sends the unit disk 1-1, onto itself iff it is if the form

z → λ
z − a

1− āz
,

for some a ∈ D and |λ| = 1. In this case, any loxodromic transformation must

actually be hyperbolic.

Given four distinct points a, b, c, d in the plane we define their cross ratio as

cr(a, b, c, d) =
(d− a)(b− c)

(c− d)(a− b)
.

Note that cr(a, b, c, z) is the unique Möbius transformation which sends a to 0, b

to 1 and c to ∞. This makes it clear that cross ratios are invariant under Möbius

transformations; that cr(a, b, c, d) is real valued iff the four points lie on a circle; and

is negative iff in addition the points are labeled in counterclockwise order on the

circle.
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Figure 12. A polar grid in the disk and some images under Möbius
transformations that preserve the unit disk.

Möbius transformations form a group under composition. If we identity the trans-

formation (az + b)/(cz + d) with the matrix
(
a b
c d

)

then composition of maps is the same as matrix multiplication. For any non-zero λ,

the translations (λaz + λb)/(λcz + λd) are all the same, but correspond to different

matrices. We can choose one to represent the transformation, say the one with

determinate 1, and this identifies the group of transformations the the group SL(2,C)

of two by two matrices of determinate 1. (If ad = bc, then

az + b

cz + d
=
adz + bd

cdz + d2
=
bcz + bd

cdz + d2
=
b

d

cz + d

cz + d
=
b

d
,

is constant and not a Möbius transformation.

The mapping

z → az + b

cz + d
,

can be written as a composition of the maps

z → cz + d,

z → 1

z
,

z → a

c
+
bc− ad

c
z,

which equivalent to claiming
(
a b
c d

)
=

(
c d
0 1

)(
0 1
1 0

)(
(bc− ad) a

0 c

)
.
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Either claim follows by a direct computation. The linear maps have the property

that circles map to circles an lines map to lines. The inversion also has this property,

although it may interchange the two types of sets. The equation

x2 + y2 + αx+ βy + γ = 0(4)

defines a circle in the plane, depending on the choice of α, β, γ. If we set z = x+iy 6= 0

and 1
z
= u+ iv, then

u = ℜ( x− iy

x2 + y2
) =

x

x2 + y2
,

v = ℑ( x− iy

x2 + y2
) =

−y
x2 + y2

,

x =
u

u2 + v2
,

y =
−v

u2 + v2
,

so (4) becomes

u2

(u2 + v2)2
+

v2

(u2 + v2)2
+

αu

(u2 + v2)2
+

−βv
(u2 + v2)2

+ γ = 0.

After simplifying this becomes

1

(u2 + v2)2
+

αu

u2 + v2
+

−βv
u2 + v2

+ γ = 0,

1 + αu− βv + γ(u2 + v2) = 0,

which is the equation of a circle or line (depending on whether γ 6= 0 or γ = 0). Thus

z → 1
/
z sends a circle not passing through the origin to a circle and a circle that does

pass though 0 to a line (which is the same as a circle passing through ∞). Thus we

have shown

Lemma 12. Möbius transformations map circles to circles, assuming the conven-

tion that lines are considered as circles through infinity.

The reflection through a circle |z − c| = r is defined by arg(w∗ − c) = arg(w − c)

and |w − c| · |w∗ − c| = r2. Möbius transformation preserve reflections, i.e., if τ is

a linear fractional transformation that send circle (or line) C1 to circle (or line) C2

then pairs of symmetric points for C1 are mapped by τ to symmetric points for C2.
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Lemma 13. Every Möbius transformation can be written as a even number of

compositions of circle and line reflections.

The proof is left to the reader.

In higher dimensions, reflections through planes and spheres still makes sense. In

this case, Möbius transformations are defined as the group generated by any even

number of compositions of such maps (even so that the result is orientation preserv-

ing).

Each reflection in a line can be extended to a reflection across a plane in 3-

space that is perpendicular to R
2. Similarly, any circle reflection in the plane can be

extended to a reflection through a sphere in 3-space. From this it is possible to show

that every Möbius transformation has a unique extension to a conformal map of S2

to itself.

The plane can be identified with a 2-sphere minus a point via stereographic pro-

jection. Möius transformations can be considered as mappings of the sphere to itself.

To be more concrete, we consider the unit sphere S2 = {(x, y, zz) : x2 + y2 + z2 = 1}
in R

3 and let N = (0, 0, 1) denote the “north pole”. Then S2 \ {N} is topolgocially a

plane and the correspondence can be made explicit by joining each point of the (x, y)-

plane to N by a straight line in R
3. This line hits S2 at some point (u, v, t) 6= N

and the map (x, y) → (u, v, t) is called the stereographic projection of the plane onto

a sphere. We can easily compute formulas for this map. Set r =
√
x2 + y2 and

ρ =
√
u2 + v2. Then we have t2 + ρ2 = 1 and (r − ρ)/r = t. Solving for t gives

t =
r − 1

r + 1
,

which implies

u =
x

rρ
=

x

r
√
1− t2

,

v =
y

rρ
=

y

r
√
1− t2

.

We leave it to the reader to check that circle or lines in the (x, y)-plane map to circles

on S2.

In 3 dimensions and higher, these are the only conformal maps. By a theorem

of Liouville, any conformal map from a domain Ω ⊂ R
3 into Ω′ ⊂ R

2 must the

restriction of a Möbius transformation. This is not at all elementary. For one proof
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(assuming the map is at least C2, see “Inversion theory and conformal mappings” by

[?]. The result is still true if we assume only C1, but even harder to prove.

3. The Schwarz-Christoffel Formula

The Schwarz-Christoffel formula gives a formula for the Riemann map of the disk

onto a polygonal region Ω: if the interior angles of P are απ = {α1π, . . . , αnπ}, then

f(z) = A+ C

∫ z n∏

k=1

(1− w

zk
)αk−1dw,

where {z1, . . . , zn} are the points that map to the vertices of the polygon (and will

be called the prevertices or conformal prevertices or z-parameters). See e.g., [?], [?],

[?]. The interior angles of an n-gon sum to (n− 2)π, which implies
∑

k αk = −2.

On the half-plane the formula is

f(z) = A+ C

∫ n∏

k=1

(w − zk)
αk−1dw.

In the case of the half-plane, there is a special boundary point, namely ∞. We

assume this point is mapped to the last vertex, vn, of the polygon, then the Schwarz-

Christoffel formula can be written as

f(z) = A+ C

∫ n−1∏

k=1

(w − zk)
αk−1dw.

The formula was discovered independently by Christoffel in 1867 [?] and Schwarz

in 1869 [?], [?]. For other references and a brief history see Section 1.2 of [?]. It is

also possible to formulate it with other base domains, such as an infinite strip (see

[?]). See [?] for a version involving doubly connected polygonal regions. There are

also versions for domains other than polygons, e.g., circular arc polygons as in [?], [?].

In this case, we get a simple formula for the Schwarzian derivative of the conformal

map, but it involves unknown parameters with no obvious geometric interpretation.

Lemma 14. With notation as above
∑n

k=1(αk − 1) = −2.

Proof. The interior angles of an n-gon sum to (n− 2)π, so
n∑

k=1

(αk − 1) =
1

π
(n− 2)π − n = −2.

�
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If we apply a Euclidean similarity to a polygon, the interior angles do not change.

Thus the α parameters do not change. Such a mapping also leaves the z parameters

unchanged. Thus the maps for different but similar polygons differ only by the

constants A and C. Changing the first translates the image and the changing the

second alters the size and orientation.

Lemma 15. The function
∏n−1

k=1(w−zk)αk−1 is a non-vanishing holomorphic func-

tion on the upper half plane which extends continuously to each component of R\{zk}
and has constant argument on each such component.

Proof. Suppose α and c are real numbers and consider f(w) = (w − c)α. If f

is not an integer, then this is not a single valued holomorphic function on the whole

plane. To make it holomorphic we need to remove a branch cut from c to ∞ and

define a single valued branch on the remaining domain. For the Schwarz-Christoffel

formula we want the integrand to be holomorphic in the upper half-plane, so we can

choose any branch cut in the lower half-plane, and we choose a branch of (w − c)α

which is positive if w is real and w > c. If we do this then arg((w − c)α) piecewise

constant on the real line with a jump discontinuity at c. It has value 0 to the right

of c and value απ to the right of c.

When we multiply the various terms in the integrand of the SC formula, the

arguments add. Thus the argument of the integrand is piecewise constant with jump

at zk parameter of size θk = παk, i.e.,

arg(f ′) = arg(C) +
n∑

k=1

(αk − 1) arg(w − zk).

The image of the segment Ik = [zk, zk+1] thus has constant argument (i.e., it lies in a

line segment) and the angle between the images of Ik and Ik+1 is θk.

The first claim is obvious since it is a product of non-vanishing holomorphic

functions. �

Since f ′ is bounded, except possibly at the z-parameters, its integral f is well

defined and has a continuous extension to the boundary except at these points (in

fact, it has a holomorphic extension across the complementary intervals). It will have

a continuous extension to a z-parameters zk if |f ′(z)| = O(|z−zk|β) for some β > −1,

so that f ′ is integrable on the boundary in a neighborhood of zk. This happens as long
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Figure 13. Different possible SC images using the same angles but
different z-parameters.

as αk > 0 which happens iff θk > 0. This is always the case for bounded polygons.

It can happen that θk = 0 for some unbounded polygons, e.g., an infinite strip can

be considered as an unbounded polygon with two interior angles of size zero. In this

case the Schwarz-Christoffel formula predicts that the map from the disk to the strip

with prevertices 0,∞ should be given by

f(z) = A+ C

∫
w−1dw = A+ C log z,

which is correct. Moreover the maps fails to continuous exactly at the parameter

value z1 = 0 where the integrand has a pole of order −1.

In general, if we have two infinite edges which tend to infinity in directions θ1 <

θ2 ≤ θ1+2π we define the corresponding interior angle at ∞ to be θ1− θ2. This is in

the interval [−2π, 0] (including both endpoints, unlike the finite case). If we mapped

the unbounded polygon by a Möbius transformation so that ∞ is mapped to the

finite point (so the edges of the image are now circular arcs and not necessarily line

segments), then this is the same as the negative of the interior angle at the image

vertex. With this convention for the angle at ∞, the Schwarz-Christoffel formula can

be extended to handle unbounded polygons (e.g., see []), but in these notes we will

concentrate on the bounded case.

Our remarks so far prove the following.

Lemma 16. The SC formula for parameters {αk} (with
∑n

k=1 αk = −2) and

z1 < . . . zn defines a locally 1-1 holomorphic function which extends continuously to

the boundary and maps each parameter interval 1-1 onto a line segment. If the map
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Figure 14. Some examples of regions for which the Schwarz-
Christoffel formula gives explicit maps (i.e., we don’t need to solve
for the z-parameters). Triangles have only three prevertices which can
be placed wherever we like. Similarly for the unbounded regions shown
(assuming the angle at ∞ is is interpreted as discussed in the text).
Because of the symmetries, prevertices for regular n-gons can be taken
to be the roots of unity. Also because of symmetries the pervertices
for a rectangle can be placed at ± exp(±iθ) where θ depends on the
eccentricity e of the rectangle. This relationship is given by an explicit
infinite product, which will be discussed in Section 5.

is globally 1-1 on the boundary then it defines a conformal map from the half-plane

to a polygon with interior angles {θk}

The last claim follows because this is a general property of holomorphic maps: if

they are 1-1 on the boundary, they must be 1-1 on the interior.

The only remaining question is whether every bounded polygon can occur as the

image of such a map, i.e., given the polygon, can we find parameter values so that

the SC formula gives a map to the polygon? We shall see that this is the case later

using the Riemann mapping theorem.
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First, however, we want to check that the observations made above for the half-

plane also apply to the Schwarz-Christoffel formula for the disk.

For the disk formula, there is a similar argument. The term

(1− w

z
) =

z − w

z
= −z − w

0− z
,

has an argument that equals the angle between the vector z − w and 0 − w, which

is the same as (π − ψ)/2 where ψ is the angle between z and w (see Figure 15.

This means that as we move around the unit circle with w = exp(iθ), the function

u(θ) = arg(1− w
z
) has constant derivative 1/2 except at the point z where the function

jumps from π/2 to −π/2.
When raise this term to a power (1−w/z)α, the argument changes with derivative

α/2 except for a jump of size απ. When we take the product
n∏

k=1

(1− w/zk)
αk−1,

the arguments sum, and so the argument of the product increases with derivative
n∑

k=1

1

2
(αk − 1) =

1

2
(−2) = −1,

except at the points {zk} where there are jumps of size π(αk− 1) Thus the argument

of
n∏

k=1

(1− w/zk)
αk−1dw,

is constant on the arcs between parameter values. Thus the Schwarz-Christoffel

formula maps onto a polygonal region with the correct angles.

For maps onto a polygon there are three unknown SC-parameters, but a Möbius

transformation of the disk can map three distinct points on the circle to any other

three distinct points, so any triple will do. The only difference between the different

choices is where the origin will map to. We are free to choose the harmonic measures

of the three sides of the triangle any way we wish (as long as they sum to 1) and

Schwarz-Christoffel formula gives the corresponding map. See Figure 16.

Quadrilaterals are the first case where we have a non-trivial parameter problem

to solve. We have to find the correct 4-tuple on the unit circle and every 4-tuple is

determined by its cross ratio P ∈ (0,∞) (up to Möbis equivalence). In the special

case of rectangles, the domain is also determined by a single number, the eccentricty
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0

z

w
θ

θ

ψ

Figure 15. Since 0, w, z form an isosceles triangle, ψ + 2θ = π, or
equivalently, θ = (π − ψ)/2 .

Figure 16. The Schwarz-Christoffel map onto a triangle has no
parameters to solve for; any three distinct points give a map onto the
triangle, but with the origin going to different points

R (up to Euclidean similarity). Thus there we expect a 1-1 correspondence between

cross ratios of 4-tuple on T and eccentricities 0 < R < ∞. Suppose Ω is a rectangle

with vertices at {0, R,R+ i, i} and we have a conformal map of Ω to the upper half-

plane that sends the vertices to {0, P, 1,∞}. Alternatively, we might send the points

to {Q, 0, 1,∞}, {∞, 0,M, 1} or {0, 1, N,∞}. It easy to see that

P (R) =M(
1

R
), Q(R) =

P (R)

P (R)− 1
, N(R) =

1

P (R)
,
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so it is enough to calculate any one of these functions. For example M(R) is given

by

M = exp(−πR) 1
16

∞∏

n=1

(
1 + exp(−2nπR)

1 + exp(−(2n− 1)πR)
)8.(5)

We will give a proof of this later (see Chapter 5).

i R+i

0 R 0 M 1

Figure 17. We assume f maps a rectangle to the upper half-plane
with the vertices mapped as shown.

For R > 0 the infinite product converges and for R large (say R ≥ 1) we have

∞∏

n=1

(
1 + exp((1− 2n)πR)

1 + exp((−2n)πR)
)8 = 1 + 8e−2πR +O(e−4πR).

Thus for R ≥ 1, (equivalently 2 ≥ 1), we have

log(
1

M
) = πR− log 16 + 8e−πR +O(e−2πR),

which implies

M ≃ exp(−πR).
If we take the 4-tuple to be {w,−w̄,−w, w̄} where w = eiθ is the first quadrant,

then the cross ratio is easily computed to be

P = tan2(θ),

or θ = arctan(
√
P ). So if we want to compute the conformal map onto a 1 × R

rectangle, we compute M by (14), then compute θ as above and use the four points

given. To find R givenM , we can use a secant method for find a root ofM(R) =M0.

There is no simpler formula for the inverse of the Schwarz-Christoffel map but

the inverse for a particular point can be computed either by using a Newton iteration



30 1. INTRODUCTION TO CONFORMAL MAPPING

Figure 18. Rectangles plotted using the Schwarz-Christoffel formula
and the relation between eccentricity and cross ration for R = 1

2
and

R = 4.

on the forward map, or numerical solution of the initial value problem

dz

dw
=

1

f ′(z)
, z(w0) = z0.

The Newton iteration is faster, but requires a good initial guess. Solving the IVP

numerically is generally more reliable but slower, according to [?].

4. Crowding

Formula ?? also illustrates one of the main problems with numerical conformal

mapping: crowding. The map of the disk onto a 1×R rectangle uses a 4-tuple on the

circle with a cross ratio of ≈ exp(−πR). If we take symmetric points {w,−w̄,−w, w̄}
with w = eiθ, for a moderate R = 20, this means

θ ≈ 5.1579× 10−28 = .00000000000000000000000000051579.

The separation between w and w̄ is only about twice this size, which is smaller

than machine precision on most computers. Thus, unless we take special care, a

computer may think the parameters are {1,−1,−1, 1} (which can be interpreted as

the parameters for an infinite strip).

The connection between harmonic measure and Brownian motion gives us a good

way to getting a “feel” for what the harmonic measure should look like. Consider the

infinite strip in Figure 5 which has been divided into squares and start a a Brownian a

the center of one of these squares. By symmetry it has an equal chance of first hitting

any of the sides of the square and hence has a 1/2 probability of hitting the top or

bottom of the strip before leaving the square. If it does it the left or right side of the

square, then it has less than 1/4 chance of hitting a different dashed segment before

running into the edge of the strip. Thus is has a less that 2−2n chance of hitting n

distinct dashed lines. Thus the harmonic decays exponentially as we travel down a
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strip. A similar argument shows that in a 1×R rectangle, the harmonic measure of

the short sides is at most O(2−R) with respect to the center. Thus at least one side

has harmonic measure this small, regardless of where we choose the Brownian motion

to begin. This means that any conformal map of the rectangle to the disk must send

two vertices to within distance 2−R of each other. For polygons with long, narrow

channels, this means that not all prevertices may be distinct in machine precision.

Figure 19. Brownian motion explains why harmonic measure decays
exponentially fast in a strip. A motion starting on any of the dashed
line has probability ≤ 1/4 of hitting each of the adjacent dashed lines
(with equality only if it starts at the midpoint).

In fact, the situation is a bit worse than indicated above, since the upper bound

is not sharp. We can actually compute a conformal map from the disk to the strip

(0, 1)× (−∞,∞) as

z → 1

π
log(i

z − 1

z + 1
).

which shows that points with |z − 1| ≈ ǫ are mapped to points with ℜ(w) ≈ 1
π
log 1

ǫ
.

Thus the short sides of a 1×R rectangle actually have harmonic measure ≈ exp(−πR)
with respect to the center. Even for R = 10, this is ≈ 2×10−14. Thus we would have

to start about a trillion random walks at the center of a 1 × 20 rectangle to expect

to hit the short sides even once. Thus our method of estimating z-parameters using

random walks is not practical in general.

The crowding phenomenon is the source of many of the difficulties in numerical

conformal mapping. Roughly it says that conformal maps from a domain into a disk

can undergo exponential compression, so that points that are well separated in the

domain become identified in the disk (at least with finite precision). The inverse map

from the disk to the domain is, in a loose sense, not even well defined numerically.

The problem is that there is no choice of “center” for a polygon from which all the

sides look about the same size (in the sense of harmonic measure) or even within
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several orders of magnitude of the same size. we shall see later (e.g. Section 5) that

one way around this is to compute conformal maps with respect to several different

centers such that any small part of the domain “looks uncrowded” from some center

point.

For the present we will simply avoid computing any examples where the separation

of the SC-parameters is too small. Later we will present methods for dealing with

such domains.

5. Power series of Schwarz-Christoffel maps

Note that using the general form of the binomial theorem,

(1 + z)p =
∞∑

k=0

p(p− 1) · · · (p− k + 1)

k!
zk,

we can easily compute power series for these functions in disks away from the sin-

gularities. For example, suppose we take n = 4, α = {1
2
, 1
2
, 1
2
, 1
2
} and parameters

z = {1, i,−1,−i}. The Schwarz-Christoffel formula gives

f ′(w) =
n∏

k=1

(1− w

zk
)α

= (1− w)−1/2(1 + iw)−1/2(1 + w)−1/2(1− iw)−1/2

= (1− w2)1/2(1 + w2)−1/2

= (1− w4)−1/2

= 1 +
1

2
w4 +

3

8
w8 +

5

16
w12 +

35

128
w16 + . . .

so

f(z) = z +
1

10
z5 +

3

72
z9 +

5

208
z13 +

35

2176
z17 + . . . .

This series is plotted for various truncations in Figure ??.

If we change the SC-parameters by a Möbius transformation, the image has the

same shape, but the origin is mapped to a different point. Figure 21 illustrates this,

In the first case, the Möbius transformation is symmetric with respect to the real

axis so the four new parameters are as well, and hence the image domain is also

symmetric. In the second example, the parameters are no longer symmetric, so we

might not expect the image to be symmetric either (but since the angles are the

same, it will still be a square), However, the figure is not rotated. This is becuase
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Figure 20. The image of the unit disk under different truncations of
the power series for the conformal map onto a square. The truncations
are at n = 5, 10, 50, 100, 500, 1000.

we choose our branches of (1 − w
zk
)αk−1 to be real on the reals axis; thus the image

edge containing the image of 1 will always be vertical (or have a fixed angle with the

vertical if 1 is a SC-parameter).

Figure 21. The same Schwarz-Christoffel map as in Figure 20, ex-
cept that we have moved the SC-parametes by a Möbius transforma-
tion. In the first case we used z → (z − α)/(1 − ᾱz) with α = −1/2
and in the second with α = −.9(1 + i)/

√
2. Note, that this also effects

the sharness of the corners, since some parameter values are now closer
together.
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The power series for more general Schwarz-Christoffel maps can be computed by

finding the Taylor series for each term (1 + (−w
zk
)αk−1 and then multiplying the series

using the standard formula

(
∞∑

n=0

anz
n)(

∞∑

n=0

bnz
n) =

∞∑

n=0

(
n∑

k=0

akbn−k)z
n.

and then integrating term-by-term using
∫ ∞∑

n=0

cnz
n =

∞∑

n=0

cn
n+ 1

zn+1.

For example, we we take

α = {1
2
,
3

2
,
1

2
,
1

2
,
1

2
,
3

2

1

2
,
1

2
},

and eight equally spaced SC-parameters, we get

f(z) = z +−0.333333iz4 + 0.0555556z10 − 0.0454545iz120.0220588z18

−0.0197368iz20 + 0.0125z26

−0.0115741iz28 + 0.00828598z34 − 0.0078125iz36

+0.00600229z42, 0,−0.00572311iz44 + . . . .

Figure 22. Truncations of a Schwarz-Christoffel map onto an 8-gon
truncated at n = 50 and 500. Every edge has equal harmonic measure.
Every edge has equal harmonic measure.

Even though every conformal map has a power series expansion in the disk, this

expansion may not be a computationally effective way to represent the map. In the
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following figures I show the image of the unit disk under truncations of the power

series that represent conformal maps onto rectangles. These maps have the form

f(z) =

∫ z

0

∏
(1− w

e

−iθk
)−.5dw,

where θk ∈ {−ǫ, ǫ, π − ǫ, π + ǫ}. The form of this equation we be explained later,

when we discuss the Schwarz-Christoffel formula. The parameter ǫ represents the

probability that a random path started at the center of the rectangle will hit one

of the two shorter sides before it hits one of the two longer sides. This determines

the eccentricity of the rectangle, although the explicit relationship is a complicated

infinite product and will be discussed later. The main point is that the smaller ǫ is,

the longer the rectangle will be and the more terms will be needed to represent the

map onto the rectangle accurately. In Figure 23, we take ǫ = 1 and show truncations

for n = 5, 10, 50, 100, 500, 1000. Even by N = 100 the the shape of the rectangle is

clear. In Figure 24 we take ǫ = .001 which corresponds to a much longer rectangle.

In this case, we do not see the corners clearly even for 1000 terms of the power series.

This example shows that the degree of approximation of a power series to a conformal

map depends on the shape of the image domain. If there are thin corridors or “hard-

to-reach” corners, then extremely high degree approximations may be needed. Later

we will investigate ways to represent conformal maps that are accurate with much

smaller storage.

The bad news is that this series converges rather slowly. If f is holomorphic on a

disk D = D(z0, r), then f has a convergent power series

f(z) =
∞∑

n=0

an(z − z0)
n

on this disk. Since this series converges, the terms must tend to zero, hence they

must be bounded and so

lim sup
n

|an|tn <∞,

for every t < r. In fact, if f extends continuously to the boundary of the disk then

we can apply Cauchy integral formula and do a little better

|an| = | |f
(n)(z0)|
N !

= | 1
2π

∫

w:|w−z0|=r

f(w)

(w − z0)n+1
dw| ≤ 1

2πrn
max
∂D

|f(z)|.
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If f is a conformal map from the disk onto a polygon there is at least one boundary

point where |f ′| blows up to infinity (because there is at least one vertex which has

interior angle < π). Therefore the radius of convergence for the power series for both

f and f ′ has radius exactly one and the convergence will be slow near the boundary. A

single singularity on the boundary can cause the power series to converge slowly every

on the boundary, even at points where the function itself has an analytic convergence

across the boundary. The best known example of this is the geometric formula

1

1− z
= 1 + z + z2 + z3 + . . . ,

which has only one singularity on the unit circle, is analytic elsewhere in the plane

but the power series diverges everywhere on the unit circle.

Figure 23. The image of the unit disk under different power series.
Each one is a truncation of the infinite power series for the Schwarz-
Christoffel map from the unit disk to a rectangle (chosen so the short
edges have one tenth the harmonic measure of the longer sides). The
truncations are at n = 5, 10, 50, 100, 500, 1000.
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Figure 24. This is the same as the previous figure except that the
target polygon has been changed so that the short sides have probabil-
ity .001. The truncations are n = 5, 10, 50, 100, 500, 1000. This make
the rectangle longer and requires a higher degree truncation to achieve
the correct shape.
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Figure 25. In the upper left is the target “L”-shaped polygon. The
parameters for Schwarz-Christoffel are taken to be equidistributed in
this example. The next three figures show the images of the disk under
the power series for the map with truncations at order 20, 100, 1000.

Figure 26. If the boundary is smooth then the power series is a
better approximation. Here is a C1 domain sampled at 40 boundary
points to give a polygon. We then plotted the result using 20 terms of
the power series. The domain is a square with half-disks attached to
opposite sides.
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Figure 27. Even if the domain has a reasonable smooth boundary,
crowding can still be a problem for power series. Here is an “S” shaped
region and power series approximations with 100, 200 and 2500 terms.
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Figure 28. Again in the upper left is the target polygon. The
next three figures show the images of the disk under the power series
(centered at 0) for the Schwarz-Christoffel map with truncations of
orders 100, 500, 2500. In this example, the choice of SC-parameters is
not obvious; the plots were made using parameters values found by
Davis’s method, which we will describe later.
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6. Harmonic measure and Brownian motion

Suppose Ω is a simply connected domain. Choose a base point z0 ∈ Ω and a

conformal map f : DΩ. Assume for the moment that ∂Ω is a Jordan curve and that

f has a 1-1, continuous extension to the boundary (see Caratheodory’s theorem 5).

Define the harmonic measure of E ⊂ ∂Ω with respect to the point z0 as

ω(z0, E,Ω) =
1

2π
|f−1(E)|.

This does not depend on the particular choice of f since any two maps sending 0 to

z0 differ by a rotation of the disk.

If Ω is bounded by a polygon, then the harmonic measure of each side is de-

termined by the spacing of the Schwarz-Christoffel parameters. Thus finding a set

of parameters is equivalent to computing the harmonic measure of the sides of the

polygon.

Brownian motion is the rigorous version of the idea of a “continuous random walk”

in the plane. One can think of this as a limit of a random walk on an ǫ-grid as ǫ→ 0.

The important thing is that Brownian motion is conformally invariant; i.e., the image

of Brownian motion under a conformal map is Brownian motion on the image domain.

The harmonic measure ω(z, E,Ω) is the probability that a Brownian motion started

from z will first hit ∂Ω in the set E. On the disk, this is just normalized length

measure on the boundary.

Brownian motion is a continuous version of a random walk. That is, it is a

stochastic process B(t), t > 0 such that

(1) Increments are independent: if t0 < t1 < . . . tn, then the random variables

B(t0), B(t1)−B(t0), . . . B(tn)−B(tn−1) are independent.

(2) Increments are normally distributed: if s, t ≥ 0 then

Prob(B(s+ t)−B(s) ∈ A) =

∫

A

(2πt)d/2e−|x|2/2tdx.

(3) With probability one B(t) is a continuous function of t.

We can also think of d-dimensional Brownian motion as a probability measure on

the set of continuous paths in R
d, i.e., functions from [0,∞) into R

d. This is called

Weiner measure and we shall denote it by Prob. For example, using this notation
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property (3) would be written

Prob(B(t) is continuous ) = 1.

An event which happens with probability one with respect to Weiner measure will

be said to happen almost surely.

Brownian motion was first described mathematically by Einstein in 1905, but was

first proven to exist by Weiner in 1923. Brownian motion can be considered as the

continuous limit of a random walk on a square grid, as shown in Figure 29. In fact,

this grid structure is not really needed; one can take Brownian motion to be the limit

of many different discrete walks (which must have mean value zero at each step). For

example, in Figure 30, we show it as a limit of a walk in a triangular grid (at each

time we may step unit distance in any of six directions) and in Figure 31 we show a

walk in which at each time we step unit distance in any direction (chosen uniformly

and at random). The fact that Brownian motion is the limit of this last process as

the step size decreases to zero, gives a heuristic reason for its conformal invariance:

since conformal maps send infinitesimal circles to infinitesimal circles the “random

direction” process should be mapped to another such process, except with variable

size circles depending on the size of the derivative of the conformal map.

Figure 29. Random walks on a square grid with 100, 1000 and 10,000 steps.

Brownian motion itself is a rather technical process to deal with but there is a

simpler process on Ω that has the same hitting distribution on the boundary and

was introduced by Kakutani. Moreover, simulating a Brownian motion by a random

walk on a very fine grid can take a long time, and Kakutani’s process will speed

this up. Starting at a point of zΩ choose a radius r so that B(z, r) ⊂ Ω, e.g., take

rλdist(z, ∂Ω) for some fixed 0 < λ ≤ 1. If we start a Brownian motion at z and wait
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Figure 30. Random walks on a triangular grid with 100, 1000 and
10,000 steps.

Figure 31. Random paths formed by stepping unit distance in a
randomly chosen direction. The pictures show paths with 100, 1000
and 10,000 steps. Note that regardless of the discrete random walk, at
large scales the results all look the same.

for the first contact with ∂B, this is the same as simply choosing a point at random

on ∂B. Repeat this procedure to construct a sequence of points. This is the same

as choosing a sequence along a single Brownian path with the selections becoming

more frequent as the path approaches the boundary of the domain. With probability

1 the Brownian path hits the boundary of the domain and the sequence of points

constructed must converge to the same boundary point. Thus the hitting probability

of Kakutani’s process is the same as for Brownian motion. See Figure ??. Moreover,

this process is faster to simulate. If we are simulating Brownian motion by a walk

on an ǫ-grid, and the starting point is about unit distance from the boundary, then

it takes about ǫ−2 steps to hit the boundary (or reach a grid point that is within ǫ

on the boundary). On the other hand the Kakutani process will be within ǫ of the

boundary in about log 1
ǫ
steps. The main cost is to recompute the distance to the

boundary each time (which is at worst an O(n) computation in an n-gon and may
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be faster if we are clever, e.g., precompute a Voronoi diagram and keep track of what

cell we are in).

Figure 32. Examples of the paths in the Kakutani process with
λ = 1/2 in the disk and λ = 1 in a polygon.

Therefore one way to approximate the z-parameters for a polygon is to choose

a basepoint for the interior and simulate many Brownian paths starting from this

point and keep a count of how many hit each edge. This count (divided by the total

number of paths) gives the approximate harmonic measure of each edge and hence

the approximate separation between the corresponding prevertices. The trouble with

this method is that it is slow, very slow. In the best case, the number of sides of

the polygon is small and all sides have comparable harmonic measure, i.e., they are

all about equally likely to be hit. The bad news is that the hitting frequencies of

random paths will converge to the actual harmonic measures with error that tends to

zero like n−1/2, e.g., about a million random walks are required to get three decimals

of accuracy. The really bad news is that usually the sides do not all have large

harmonic measure and if some sides have very small measure then we have to wait

even longer for them to get hit frequently enough to estimate their measure. For

example, consider the “L”-shaped polygon in Figure ??. The vertices are {0, 2, 2 +
31, 1 + 3i, 1 + i, i} and the starting point is 1.5 + i. The left picture shows 10 sample

paths of the Kakutani process, the center shows 100 paths and the right shows 1000

paths. Even after a 1000 sample paths, only one has managed to reach the top

horizontal edge, and this polygon is by no means extreme.
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Figure 33. These show the polygon with 10, 100, and 1000 random
walks. Note how hard it is for the remote edges to get hit. After 1000
attempts the top edge still has not been hit. If the smallest harmonic
measure of any edge is ǫ the we expect to need 1/ǫ to get even one hit
on that edge.

Table 1 shows the number of hits per side for two experiments; one with 1,000

random paths and one with 10,000 random paths. In Figure 34, we show the images of

the Schwarz-Christoffel maps when we use the parameters given by these experiments.

The left picture is the target polygon, the center is uses the parameters from the

1,000 path experiment and the right uses 10,000 paths. The latter looks noticeable

better, and we shall see later that it is indeed about 10 times better, according to a

certain precise measure of the closeness of polygons. In Section 5 we shall discuss an

improvement of this method, but using random walks to estimate harmonic measure

should not be considered a really practical approach. We have introduced it because

it is pretty, easy to understand and is guaranteed to produce the correct answer

(eventually). Moreover, the intuition provided by thinking of harmonic measure (and

hence the z-parameters) as the hitting probability of Brownian motion is invaluable

and frequently leads us to quickly to the right answer (even if we later replace this

intuition by a calculation or proof based on techniques such as extremal length,

hyperbolic geometry or potential theory). We shall see one such case in the next

section.
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1 131 0.823097 0
2 516 3.24212 0.823097
3 1 0.00628319 4.06522
4 271 1.70274 4.0715
5 76 0.477522 5.77425
6 5 0.0314159 6.25177

1 1143 0.718168 0
2 4952 3.11143 0.718168
3 27 0.0169646 3.8296
4 2833 1.78003 3.84657
5 961 0.603814 5.62659
6 84 0.0527788 6.23041

Table 1. The left table was generated using 1,000 random walks
and the right by 10,000 random walks. in each table the columns give,
respectively, the side number, the number of hits on that side, the cor-
responding spacing between parameters and a choice of the parameters
themselves. The vertices are {0, 2, 2+31, 1+3i, 1+ i, i} and the center
point is z = 1.5 + i. In our numbering scheme the first edge is the
horizontal edge on the bottom.

Figure 34. On the left is the target polygon, in the center the SC
image derived from 1,000 random walks and on the right is the SC
image using parameters derived from 10,000 random walks inside the
polygon. The values of the parameters are given in Table 1.
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Figure 35. Polygons for which every edge has the same harmonic measure.

If a domain has a symmetry, then the conformal map should have a corresponding

symmetry. For example, if the domain Ω is symmetric with respect to the real line,

and we choose the conformal map f : D → Ω with f(0) real and f ′(0) > 0, then f will

also be symmetric with respect to the real line, i.e., f(z̄) = f(z). When a polygon

has symmetries, then certain edges must have harmonic measures which agree (at

least with respect to properly chosen base points) and this reduces the number of

independent parameters we must solve for in the Schwarz-Christoffel formula.

For example, the domains in figure 5 have rotational and reflection symmetries

that map any edge to any other edge, so every edge must have the same harmonic

measure. Thus the parameters must be evenly distributed around the circle.

Even if the domain is not so symmetric that every edge has the same harmonic

measure with respect to some point, there may still be able to group the edges into

subcollections, so that each edge in a subcollection has the same harmonic measure.

For example, the domain in Figure ?? is the second generation in the construction
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of the von Koch snowflake and has 48 sides. However, the symmetries of the domain

divide the edges into 4 classes of twelve sides each and the harmonic measure is the

same for any two edges of the same class. Thus the problem of determining the z

parameters is reduced from a 48-dimensional problem to 4 dimensions. To obtain

Figure ?? we ran a random walk from the origin and recorded the class of the edge

it stopped on. From this we estimated the harmonic measure of each class and gave

each edge from a given class the same harmonic measure. Compare these results with

Figure 36, where we used many more random walks to try to estimate the harmonic

measure of each individual side.
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Figure 36. The top shows the target polygon: a second generation
von Koch snowflake. The middle row shows three attempts to find the
SC parameters using 1000 random walks where each of the 48 edges was
considered separately. The bottom row uses the 12 fold symmetry of
the polygon. The 48 edges are grouped into 4 collections; the number of
hits in each collection is counted and divided by 12 to give the harmonic
measure of each side. The left shows the result after 100 random walks
and the right after 1000 random walks. See Figure 44 for a measure of
how accurate these are.
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7. The quasiconformal distance between polygons

When computing approximations for the z-parameters it would be nice to have a

way of measuring how close our approximations are to correct parameters, assuming

we can do this without actually knowing the correct parameters. Moreover, we should

remember that there is more than one choice of “correct” answer, so that simply want

A standard way to measure the distance between sets is with the Hausdorff dis-

tance, which is defined as

d(E,F ) = inf{ǫ : E ⊂ F ǫ and F ⊂ Eǫ},

where Eǫ = {x : dist(x,E) < ǫ} is an ǫ neighborhood of E. However, for our

purposes, we will often want to consider two regions that correspond under Euclidean

similarities to be the same, so using the Hausdorff distance would be difficult to

compute, even for polygons.

For polygons, the most obvious thing to do is compute the vector of sidelengths

normalized by total length

{ |vk+1 − vk|∑
k |vk+1 − vk|

}

and compute the distance to the corresponding vector for the target polygon with

respect to some norm on R
n (e.g., ℓ1, ℓ2, ℓ∞).

The difficulty with this method is that when there are sides with many different

length scales, the longer sides contribute much more to the distance than the short

sides, e.g., see Figure ??. Moreover, it is not clear that comparing the sides of the

polygon in this way has a simple interpretation in terms of the geometry of the

z-parameters.

We would like to have a distance based on comparing shapes of polygons, so that

small distance means that the shapes are similar at all scales. Moreover, the distance

should have a reasonable interpretation in terms of the z-parameters. The distance

we will consider is based on the class of quasiconformal maps. Conformal maps have

derivative maps that are Euclidean similarities. In particular the derivative maps

send circle to circles. A K-quasiconformal map has a derivative which sends circles

to ellipses of eccentricity at most K.
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Figure 37. These two polygons only differ on a few short edges,
so any distance based on normalized edge lengths with say these are
close together. However, we want to define a distance that will place
these about unit distance apart, recognizing that the “hooks” are sig-
nificantly different shapes if we rescale them to unit size.

1 K

Figure 38. The derivative of a K-quasiconformal map sends circles
to ellipses of eccentricy ≤ K.

Suppose f = (u, v) the derivative is given by

Df =

(
ux uy
vx vy

)
.

The unit circle is mapped to an ellipse by this affine map and the eccentricity of

the ellipse (the ratio of the length of major axis to the length of the minor axis) is√
λ1/λ2 where λ1, λ2 are the eigenvalues of Df . The eigenvalues of this matrix are

the roots of the equation

det(DF−λI) =
(
ux − λ uy
vx vy − λ

)
= (ux−λ)(vy−λ)−uyvx = (ux−λ)(vy−λ)−uyvx.

We can use the quadratic formula to find the two roots λ1 ≥ λ2 and then compute

the eccentricy of the ellipse.
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However, it is much more convenient to do this calculation in complex notation.

Write

fz =
1

2
(fx − ify) =

1

2
(ux + vy) +

i

2
(vx − uy),

fz̄ =
1

2
(fx + ify) =

1

2
(ux − vy) +

i

2
(vx + uy).

Then

df = fzdz + fz̄dz̄,

i.e., the tangent map to f is given by

z → fzz + fz̄ z̄.

If |z| = 1 then the largest its image can be is |fz|+ |fz̄| and this occurs when the two

components have the same argument (so the absolute values add), i.e., when

arg(fzz) = arg(fz̄ z̄),

arg(fz) + arg(z) = arg(fz̄)− arg z),

arg z =
1

2
(arg(fz̄)− arg(fz)).

Similarly, the minimal length the image of z can have is |fz| − |fz̄| when fzz points

in the opposite direction from fz̄ z̄, and this occurs when

arg(fzz) = π + arg(fz̄ z̄),

arg z =
π

2
+

1

2
(arg(fz̄)− arg(fz)).

Thus the image of the unit circle has major axis length

|fz|+ |fz̄|,

and the minor axis of length

|fz| − |fz̄|,
and

(|fz|+ |fz̄|)(|fz| − |fz̄|) = |fz|2 − |fz̄|2 = uxvy − uyvx,

is the Jacobian of f . It is often convenient to write

µ =
K − 1

K + 1
= fz̄/fz,

and call this the dilatation of the map. Note that |µ| < 1 if K is finite.
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Lemma 17. Suppose T1, T2 are triangles with vertices {z1, z2, z3} and {w1, w2, w3}
respectively (in the same orientation). Then the affine map f : T1 → T2 defined by

mapping zk → wk for k = 1, 2, 3 has complex dilatation

µ =
a− b

b− ā
,

where a = (z3 − z1)/(z2 − z1) and b = (w3 − w − 1)/(w2 − w1).

Proof. We can map T1 to the triangle T ′
1 with vertices {0, 1, a} by the conformal

map z → (z − z1)/(z2 − z1) and map T2 to the triangle T ′
2 with vertices {0, 1, b} by

z → (z − w1)/(w2 − w1). Since these are conformal, they have complex dilatation 0.

We can map T ′
1 to T ′

2 by the map of the form

z → αz + βz̄,

where we need α + β = 1 and αa + βā = b. Solving gives β = (a − b)/(a − ā) and

α = 1− β = (b− ā)/(a− ā). Thus µ = β/α = (a− b)/(b− ā). �

Consider the map that stretches in the horizontal direction f : (x, y) → (ax, y)

with a > 0. Then in complex notation this is

f(z) =
a

2
(z + z̄) +

1

2
(z − z̄) =

a+ 1

2
z +

a− 1

2
z̄,

which has derivatives fz =
1
2
(a+ i) and fz̄ =

1
2
(a− i). Thus

K = (|a+ 1|+ |a− 1|)/(|a+ 1| − |a− 1|),

which equals a if a ≥ 1 and equals 1/a if 0 < a < 1. Thus K measures the amount

of stretching.

If f is a C1 map we define Kf (z) and µf (z) applying the definitions above to the

tangent map of f . A C1 mapping on Ω is called a K-quasiconformal mapping if

sup
z∈Ω

|Kf (z)| ≤ K.

If K = 1, then the mapping is conformal. The function µ = µf is called the Beltrami

coefficient of f and satisfies the following composition laws:

µf−1 ◦ f = −(fz/fz)
2µf ,

µg◦f (z) = (fz(z)/f̄z(z))
µg(f(z))− µf (z)

1− µg(f(z))µf (z)
.
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We measure the distance between n-tuples, z,w ∈ D, using the metric

dQC(w, z) = inf{logK : ∃ K-quasiconformal h : D → D such that h(z) = w.}
This metric is invariant under Möbius self-maps of the disk, which is natural, since

we only expect to know the prevertices up to a Möbius transformation. Although the

metric might seem a little awkward, we can often estimate this distance explicitly. In

particular, when n-tuples are sets of z-parameters associated to two polygons we can

estimate the distance between the n-tuples by finding maps between the polygons.

Lemma 18. If there is a K-quasiconformal map ϕ : P1 → P2 sending vertices to

vertices, then there is a K-quasiconformal map of the disk sending the SC-parameters

for P1 to the SC-parameters for P2.

Proof. Take f−1
2 ◦ϕ◦f1 where fk is the conformal map D → Pk for k = 1, 2. �

Note that the composition of a quasiconformal and conformal map is again quasi-

conformal and with the same constant. In particular, if f1 : D → Ω1 and f2 : D → Ω2

are conformal maps, and g : Ω1 → Ω2 is quasiconformal, then G = f−1
2 ◦g◦f1 : D → D

is quasiconformal with the same constant as g. Consider the case then Ω1,Ω2 are

bounded by polygons. Then any map between them which sends vertices to vertices

corresponds to a map of the disk whose boundary extension sends one set of prever-

tices to the other. One simple case when there is an “obvious” vertex preserving map

between the polygons is when the two polygons have equivalent triangulations. This

means that there are cyclic labellings of the vertices of each polygon’s vertices and

triangulations of the polygons so that exactly the same set of triples of vertices are

used. See Figure 5. In general, two n-gons need not have any equivalent triangula-

tions, but we are mostly interested in the case when both polygons have the same set

of interior angles and are close in some sense, so that we hope this does occur. (If one

allows triangulations with Steiner points, i.e., points in the interior of the polygon,

and not just the original vertices then any two n-gons have equivalent triangulations

with at most O(n) extra vertices. Moreover, one can add O(n2) Steiner points and

obtain a triangulation that is equivalent to a certain triangulation depending on n

but not on the particular polygon. See []).

Given two polygons with compatible triangulations we can explicitly compute the

quasiconformal constant of the piecewise affine map which maps one triangulation to



7. THE QUASICONFORMAL DISTANCE BETWEEN POLYGONS 55

Figure 39. The left and center polygons have compatible triangula-
tions but the one on the right is not compatible to either of these.

Figure 40. Each of these 8-gons has a single possible triangulation
and they are not compatible. Thus general polygons need not have
compatible triangulations if we do not allow Steiner points.

the other and this gives an upper bound for the best quasiconformal map sending Ω1

to Ω2 and preserving the vertices, and hence for the quasiconformal distance between

the two sets of prevertices.

If P1, P2 are two polygons that have equivalent triangulations, then we can com-

pute the quasiconstant for mapping each triangle for P1 to the corresponding triangle

for P2. These individual affine maps form a global quasiconformal map from the

interior of P1 to the interior of P2 whose quasiconstant is the maximum constant over

all the triangle maps. See Figure 41.

One example of estimating the QC distance for two polygons is illustrated in

Figure 41. A more interesting example is to consider the three polygons shown in

Figure 5. This shows a target polygon on the left and two Schwarz-Christoffel images

using 1000 and 10000 random walks to estimate the z-parameters. The polygon on
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Figure 41. Two polygons with equivalent triangulations. The ver-
tices for the first are {0, 3, 3+2i, 5+2i, 5+4i, 4i}, {0, 3, 4+2i, 6+2i, 5+
4i, 4i}, and labeled counterclockwise starting at 0. The triangles (in
terms of the vertex labels) are {1, 2, 3}, {1, 3, 6}, {3, 5, 6}, {3, 4, 5}. The
distortion K for the four triangles is 1.64039, 1.33333, 1.64039, 1.64039.
The maximum of these is an upper bound for the QC-distance between
the prevertices of the two polygons.

the right looks “better”, i.e., closer to the target, and by considering affine maps

between compatible triangulations we can make this more precise.

The idea of compatible triangulations is interesting in the context of conformal

mappings in the following way. As noted above, two n-gons need not have compatible

triangulations unless we allow Steiner points to be added. If we allow Steiner points,

then any two n-gons have a compatible triangulations. Can we take corresponding

triangles to be similarities, or close to similarities? For triangles which touch original

vertices of the polygons, this is clearly impossible, but the Riemann mapping theorem

implies that all triangles except those in an ǫ neighborhood of the original vertices

can be taken to almost similar, i.e., corresponding triangles can be mapped to each

other 1 + ǫ quasiconformal affine maps. Conversely, shrinking ǫ to zero and taking

the limit of such piecewise affine maps gives a conformal map in the limit and proves

the Riemann mapping theorem.

A couple of examples will serve to show that the metrics based on side length

vectors and on quasiconformal mappings can be very different. In Figure 42 we have

shown domains that are far apart in the side length sense but are quasiconformally

close. Each is a square with a long narrow corridor attached, the second one being

exactly half the size in both dimensions. Because each side of the corridor is half as

long in the second domain, the normalized side length vectors differ by about 1/12 in

two coordinates, and hence the distance will be large. However, these two domains
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are close in a quasiconforml sense. In each domain consider the half-annuli bounded

by the dashed lines. We clam these can be mapped to each other by a quasiconformal

map with small constant (at least if the inner and outer radii have large ratio). This

is because the map

fα : z → z|z|α−1,

is quasiconformal on the plane with constant K = max(α, 1
α
). This can be verified

by a computation of its partial derivatives, but it is simpler to restrict to the upper

half-plane, map the half-plane to an infinite horizontal strip by the (conformal) map

z → log z and note that our map is conjugated to (x, y) → (αx, y) which is clearly

K-quasiconformal. If we scale our first half-annuli so the outer radii is 1 and the

inner is r ≪ 1 then its image under fα is a half-annuli with outer radius 1 and inner

radius R = rα = r/2, if α = 1− 2
log r

. We then extend out map to be conformal and

linear on the remaining pieces of the domain, and obtain a K-quasiconformal map

between the domain with K as close to 1 as we choose, depending only on the width

of the corridor.

Figure 42. These two domain are close in the QC metric but far in
the vector of side lengths metrics. The are far in the latter metric since
the thin channels have significantly different lengths. They are close in
the QC metric since the half-annulus regions between the dashed curves
can be mapped to each other with small QC norm if the ratio between
the inner and outer radius is large enough. Outside these regions we
use linear conformal maps.

In Figure 43 we show two domains which are close in the vector sense but not

in the QC sense. These domains are squares with two vertical slits removed, one

attached to the top edge and the other to the bottom edge and each with length

about 3/4’s of the side length of the box and about ǫ apart. In the first domain
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the slit attached the top is to the left of the other slit and in the second it is to

the right. In terms of side lengths, this only requires changes of about size ǫ in the

segments along the top and bottom of the square, so these domain are close in this

sense. However, any homeomorphism of the interiors must have large distortion. For

example, we draw a dashed vertical line in the left picture; its image under such

a homeomorphism must look something like the dashed curve on the right, which

requires a large QC constant.

Figure 43. These are two domains which are close in the vector
of side lengths sense, but not in the QC sense. Any homeomorphism
of the interior which respects vertices must map the dashed vertical
line on the left to something like the dashed curve on the right, which
requires large distortion.

How can we bound the QC distance from below more explicitly? This can be

done using conformal modulus, which will be discussed in a later chapter.

8. Schwarz-Christoffel iterations and Davis’s method

Suppose Ω has polygonal boundary and f : D → Ω is conformal. The Schwarz-

Christoffel formula (we abbreviate to “SC-formula” below) says

f(z) = A+ C

∫ z n∏

k=1

(1− w

zk
)αk−1dw,

where απ = {α1π, . . . , αnπ}, are the interior angles at the vertices v = {v1, . . . , vn},
and z = {z1, . . . , zn} = f−1(v) are the conformal preimages of the vertices (also know

as the SC-parameters). For a fixed α, we can think of the formula as defining a map S

from n-tuples in T to polygons (possibly self-overlapping). In fact, Möbius equivalent
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Figure 44. These polygons were drawn in Figure 36. The top show
the target polygon and a triangluation. The bottom shows two attemps
to calculate the SC-parameters using random walks and symmetry. The
QC distance in the first case is 1.63525 (100 walks) and in the second is
1.11956 (1000 walks), justifying the idea that the second picture looks
“better” than the first.

n-tuples give Euclidean similar polygons, so it is convenient to think of S as a map

from T
n
∗ (n-tuples of distinct points on T modulo Möbius transformations) to P n

∗
(complex n-tuples modulo similarities). We can identify T

n
∗ = R

n−3 as follows: fix a

combinatorial triangulation of the n points, and for each pair of adjacent triangles

let ρk be the cross ratio of the four vertices. This is a positive real number since

the points lie on T (and if we take the correct ordering), so log ρk ∈ R. The original

n-tuple (unique up to Möbius transformations) can easily be recovered from the n−3

values of log ρk, so T
n
∗ = R

n−3.

Suppose we have a explicit way of guessing the SC-parameters for a given polygon,

i.e., a map G : P n
∗ → T

n
∗ = R

n−g. Then F = G ◦ S gives a map R
n−3 → R

n−1. The
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desired SC-parameters for P , z∗, are a solution of F (z) = z0 = G(P ) and hence are

a fixed point of the iteration

zk+1 = zk − A−1(F (zk)− z0).(6)

We call this an SC-iteration. If A is the derivative DF of F , this iteration is Newton’s

method for n− 3 real variables. If we don’t know DF explicitly, can take a discrete

approximation using n − 3 evaluations of F ; we call this the “full iteration”. If DF

is close to the identity, then taking A to be the identity may also work and is much

faster; this we call the “simple iteration”. A compromise between these two extremes

is to start A as the identity and to use Broyden updates at each step; this is called

the “short-cut iteration” (A Broyden update multiplies A by a rank one matrix at

each step, chosen to optimize the approximation to DF given the evaluations of F

made so far. This method converges more slowly per iteration than the full iteration,

but each iteration is faster to perform and it often beats full and simple iterations in

practice).

One of the simplest such methods is due to Davis, which has the additional

advantage of taking advantage of the geometry of the domain in a straightforward

way. Suppose we are given points {z1, . . . , zn} on the unit circle. Compute an image

polygon using the Schwarz-Christoffel formula with these parameters (and the known

angles) and compare the side lengths of this polygon with the desired polygon. If a

side is too short, the corresponding parameter values are moved apart in the next

iteration and conversely. More precisely, if {zk1 , . . . , zkn} is the current guess, and the

image polygon has vertices {vk1 , . . . , vkn} we define the next set of parameter guesses

as

|zj+1
k − zk+1

j−1 | = K|zkj − zkj−1|
|vj − vj−1|
|vkj − vkj−1|

,

for j = 0, . . . , n where

K = 2π[
∑

j

|zkj − zkj−1|
|vj − vj−1|
|vkj − vkj−1|

]−1,

is a normalizing constant (to make sure the new spacings add up to 2π) and v =

{v0, . . . , vn} are the vertices of the target polygon. An example of Davis’ method is

shown in Figure 45. Further details of the first ten steps of the iteration are given in

Tables ?? and ??.
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Figure 45. The first 12 iterations of Davis’ method
(including the first step where we assume equidis-
tributed parameters). The upperbounds for the QC er-
rors (for these iterations) obtained by triangulation are
16.7817, 2.37323, 1.74869, 1.4896, 1.34707, 1.25739, 1.19638, 1.15273,
1.1204, 1.09585, 1.07687, 1.06199
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The method works in practice in many cases but is known to sometimes diverge

even locally [?]. Davis’ method assumes that increasing side length corresponds to

increasing harmonic measure. However, in some examples, this is not case. See

Figure 46. The edge on the far right makes angle < π/2 with both the adjacent

edges. In this case, lengthening this side gives a polygon that strictly contains the

first one, and the new right edge clearly has less harmonic measure. Thus we expect

Davis’ method to diverge in this case. However, when we do the experiment with this

polygon and start iterating we get a kind of degeneration where all the z-parameters

begin to cluster around one point of the unit circle. This corresponds to the origin

being mapped to a point of the polygon which is tending towards the boundary. The

behavior of the parameters under iteration is shown in Table 2.

Figure 46. Lengthening the edge on the far right of the polygon
decreases the harmonic measure of that edge from the given base point,
and hence decreases the length of its conformal preimage on the circle
(assuming the base point is mapped to the origin). Thus Davis’ method
will diverge from the correct answer given a starting point arbitrarily
close to it. The example is taken from [?]. However, renormalizing
seems to eliminate the divergence.

Davis’ method is used in [?] by Banjai and Trefethen to give a O(n) method for

finding the prevertices that is practical for tens of thousands of vertices (the bound,

however is an average case analysis, not a uniform estimate for all polygons).

The degeneration can be prevented by renormalizing the parameters each time

we iterate. Choose two adjacent sides (say the first and second) and use a Möbius

transformation of the disk to itself to map the corresponding three parameters to

1, i,−1. Thus we are choosing a “center” for the polygon (i.e., the image of zero

under the conformal map) from which these two sides each has harmonic measure
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1.01811 0.412703 0.41663 4.06205 0.373695
0.721234 0.154016 0.181627 5.11414 0.112163
0.513933 0.0634117 0.0800658 5.58571 0.0400608
0.379569 0.0288556 0.0367562 5.82124 0.0167623
0.292544 0.0145189 0.0181267 5.95 0.00799366
0.234438 0.00801887 0.00971116 6.02679 0.00423033
0.193772 0.00479989 0.00563333 6.07655 0.00242752
0.163696 0.00306846 0.00350138 6.11144 0.00148175
0.140138 0.00206525 0.00230183 6.13773 0.000947121
0.120658 0.00144461 0.00157994 6.15888 0.000625846
0.103785 0.00103819 0.00111873 6.17682 0.000422947
0.0886404 0.000758795 0.000808338 6.19269 0.000289599
0.0747276 0.000558768 0.000590043 6.20711 0.000199199
0.0618022 0.000410843 0.00043094 6.2204 0.000136497
0.0497937 0.000298814 0.000311833 6.23269 0.0000923607
0.0387541 0.000212751 0.000221155 6.24394 0.0000610976
0.0288182 0.000146421 0.000151751 6.25403 0.0000390293
0.020169 0.0000958193 0.0000990789 6.2628 0.0000236892
0.0129987 0.0000582694 0.0000601445 6.27005 0.0000133538
0.00746055 0.0000318117 0.00003279 6.27565 0.000006755110

Table 2. The evolution of the SC parameters for Davis’ method for
the polygon in Figure 46. The iteration is started at equidistributed
points, but seems to converge to a situation where all the parameters
are clustered around a single point. This corresponds to the origin being
mapped to a point in the image polygon which is closer and closer to
the boundary. We can use Möbius transformations to renormalize the
parameters by sending three of them to any three points we want. This
is discussed below.

1/4. Such a point must remain in a compact region of the polygon (at least as long as

the polygon itself stays in a compact set). This is because each of these two sides has

harmonic measure 1/4 from this point and the complement has measure 1/2. There is

a unique point of the domain at which this occurs and so the normalization prevents

the kind of degeneration described above. I do not know if adding this normalization

causes Davis’ method to aways converge to the correct answer eventually.

The vertices of the polygon are

0, 2, 6, 4 + 2I, 4 + I, I
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Note that we have placed a vertex of angle π on the bottom edge. We do this and

normalize the edges [0, 2], [2, 6] to have harmonic measure 1/3 so that the center of

the polygon is near the center of the long channel. This helps prevent the harmonic

measure of any of the sides from getting two small. Fifty iterations of the normalized

iteration gives harmonic measure (before renormalizing) of

0.333411, 0.335319, 0.000186381, 0.000180184, 0.328768, 0.00213578

relative sidelengths of

0.134715, 0.267896, 0.190897, 0.0674928, 0.271171, 0.0678286

whereas the true relative sidelengths are

0.134876, 0.269752, 0.190744, 0.067438, 0.269752, 0.067438
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Figure 47. 49 iterations of Davis’s method for the polygon in Figure
46 (with renormalizations) starting from equally spaced parameters.
On the bottom is the graph of − log(K − 1), which shows increasing
accuracy.
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Figure 48. 49 iterations of Davis’s method (with renormalizations)
starting from equally spaced parameters. On the bottom is the graph
of − log(K − 1), which shows increasing accuracy.
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Figure 49. 49 iterations of Davis’s method for another polygon.
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Figure 50. 12 iterations of Davis’s method for the second genera-
tions von Koch snowflake.



CHAPTER 2

The Riemann mapping theorem

In this chapter we review basic results from one complex variable and potential

theory and use them to give a proof of the Riemann mapping theorem (already quoted

in the first chapter).

1. The hyperbolic metric

The hyperbolic metric on D is given by dρD = 2|dz|/(1 − |z|2). This means that

the hyperbolic length of a rectifiable curve γ in D is defined as

ℓρ(γ) =

∫

γ

2|dz|
1− |z|2 ,

and the hyperbolic distance between two points z, w ∈ D is the infimum of the lengths

of paths connecting them (we shall see shortly that there is an explicit formula for

this distance in terms of z and w).

A geodesic is a shortest possible path between points. Geodesics for the hyperbolic

metric are circles orthogonal to the boundary. The orientation preserving isometries

are exactly the Möbius transformations which preserve the disk, which all have the

form z → eiθ(z − a)/(1− āz), for some θ ∈ R and a ∈ D. The hyperbolic metric ρΩ

on a simply connected domain Ω (or Riemann surface) is defined by transferring the

metric on the disk to Ω by the Riemann map. We will sometimes write ρ for any

hyperbolic metric when the domain is clear from context.

On the disk it is convenient to define the pseudo-hyperbolic metric

ρ(z, w) = | z − w

1− w̄z
|.

The hyperbolic metric between two points can then be expressed as

ψ(w, z) = log
1 + ρ(w, z)

1− ρ(w, z)
.

69
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On the upper half-plane the corresponding function is

ρ(z, w) = |z − w

w − z̄
|,

and ψ is given as before. A hyperbolic ball in the disk is also a Euclidean ball, but

the hyperbolic and Euclidean centers are different (unless they are both the origin).

The orientation preserving isometries of the hyperbolic disk are exactly the Möbius

transformations that map the disk to itself. All of these have the form

eiθ
z − a

1− āz
,

where θ is real and a ∈ D.

Recall the sine and cosine rules for hyperbolic geometry (e.g., see page 148 of

Beardon’s book [?]). Let T denote a hyperbolic triangle with angles α, β, γ and

opposite side lengths denoted by a, b, c. See Figure 1. Then we have the Sine Rule,

a

b

c

α

β

γ

av

bv

cv

Figure 1. Definitions of a, b, c and α, β, γ

sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
(7)

the First Cosine Rule,

cosh c = cosh a cosh b− sinh a sinh b cos γ(8)

and the Second Cosine Rule

cosh c =
cosα cos β + cos γ

sinα sin β
(9)

Lemma 19. Möbius transformations of D to itself are isometries of the hyperbolic

metric.
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Proof. When f is a Möbius transformation of the disk we have

f(z) =
z − a

1− āz
,

f ′(z) =
1− |a|2
(1− āz)2

.

We define the hyperbolic gradient of f as

|∇Hf |(z) = lim
z→w

ρ(f(z), f(w))

ρ(z, w)
.

Thus

|∇Hf(z)| =
1− |a|2
(1− āz)2

1− |z|2
1− |f(z)|2

=
1− |a|2
(1− āz)2

1− |z|2
1− | z−a

1−āz |2

=
(1− |a|2)(1− |z|2)
|1− āz|2 − |z − a|2

=
(1− |a|2)(1− |z|2)

(1− āz)(1− az̄)− (z − a)(z̄ − ā)

=
(1− |a|2)(1− |z|2)

(1− āz − az̄ + |az|2)− (|z|2 − az̄ − zā+ |a|2)

=
(1− |a|2)(1− |z|2)

(1 + |az|2 − |z|2 − |a|2)
= 1.

Note that

ℓρ(f(γ)) ≤
∫

γ

|∇Hf |(z)
|dz|

1− |z|2 .

Thus Möbius transformations multiply hyperbolic length by at most one. Since the

inverse also has this property, we see that Möbius transformation preserve hyperbolic

length. �

Simply connected, proper subdomains of the plane inherit a hyperbolic metric

from the unit disk via the Riemann map. If ϕ : D → Ω is conformal and w = ϕ(z)

then ρΩ(w1, w2) = ρD(z1, z2) defines the hyperbolic metric on Ω and is independent

of the particular choice of ϕ. It is often convenient to estimate ρΩ in terms of the
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more geometric “quasi-hyperbolic” metric on Ω which is defined as

ρ̃(w1, w2) = inf

∫ w2

w1

|dw|
dist(w, ∂Ω)

,

where the infimum is over all arcs in Ω joining w1 to w2.

2. Schwarz’s lemma

We start with the maximum prinicple:

Lemma 20. If f is holomorphic on the unit disk and r < 1, then

max
|z|≤r

|f(z)| ≤ max
|z|=r

|f(z)|.

Proof. By the Cauchy integral formula

|f(z)| = | 1

2πi

∫

γ

f(w)

w − z
dw| ≤

∫ 2π

0

|f(reiθ)| dθ
2πr

≤ max
|z|=r

|f(z)|.

�

As a consequence, we seen that if f is holomorphic on D and

lim sup
|z|ր1

|f(z)| ≤M,

then |f(z)| ≤ M on all of D. We use the “limsup” since we don’t know if f has

continuous boundary values. If it does then we can just write

sup
D

|f(z)| ≤ sup
T

|f(z)|.

Perhaps the most important fact relating the hyperbolic metric and holomorphic

functions is that a holomorphic map f : D → D is a contraction of the hyperbolic

metric, with equality iff if is a Möbius transformation. This fact is usually presented

as:

Lemma 21 (Schwarz’s Lemma). If f : D → D is holomorphic and f(0) = 0 then

|f ′(0)| ≤ 1 with equality iff f is a rotation. Moreover, |f(z)| ≤ |z| for all |z| < 1,

with equality for z 6= 0 iff f is a rotation.

Proof. Define g(z) = f(z)/z for z 6= 0 and g(0) = f ′(0). This is a holomorphic

function since if f(z) =
∑
anz

n then a0 = 0 and so g(z) =
∑
anz

n−1 has a convergent

power series expansion. Since max|z|=r |g(z)| ≤ 1
r
max|z|=r |f | ≤ 1

r
. By the maximum

principle |g| ≤ 1
r
on {|z| < r}. Taking r ր 1 shows |g| ≤ 1 on D and equality
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anywhere implies g is constant. Thus |f(z)| ≤ |z| and |f ′(0)| = |g(0)| ≤ 1 and

equality implies f is a rotation. �

In terms of the hyperbolic metric this says that

ψ(f(0), f(z)) = ψ(0, f(z)) ≤ ψ(0, z),

which shows the hyperbolic distance from 0 to any point is non-increasing. For an

arbitrary holomorphic self-map of the disk f and any point w ∈ D we can always

choose Möbius transformations τ, σ so that τ(0) = w and σ(f(w)) = 0, so that

σ ◦ f ◦ τ(0) = 0. Since Möbius transformations are hyperbolic isometries, this shows

Corollary 22. If f : D → D is a holomorphic then ψ(f(w), f(z)) ≤ ψ(w, z).

There are numerous generalizations of Schwarz’s lemma in the liturature. For

example, replacing the hyperbolic metric by the pseudohyperbolic metric gives

|f(z)− f(w)|
1− |f(z)f(w)| ≤

|z − w|
1− |zw| .

3. Square roots and logarithms

One of the more technical aspects of proving the Riemann mapping theorem is to

make use of the hypothesis that the domain Ω is simply connected. Simply connected

means that any closed curve γ in Ω can be continuously deformed to a point inside Ω.

However, the property that we actually use is that if Ω is simply connected, then any

non-vanishing, continuous complex valued function f on Ω has a continuous square

root, i.e., there is a function g so that g2 = f . The fact this holds for simply connected

domains is result about covering spaces.

We will give the details below, but the basic idea is as follows. Let C∗ = C \ {0}.
Then z → z2 is a covering map of C∗ to itself. If f : Ω → C

∗ continuous and Ω is

simply connected, then the theory of covering spaces says f has a “lift’ g : Ω → C so

that f equals g followed by the covering map C → C, i.e., f = g2.

In a similar way the map z → ez is a covering map from C to C
∗ so for any map

f : Ω → C
∗ there is a lifted map g : Ω → C so that f = eg (if Ω is simply connected).

This g is a branch of log f . Note that the imaginary part of g defines a continuous

branch of arg(f) on Ω.
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Now for the details. let p : E → B be continuous and surjective. An open set

U ⊂ B is evenly covered if the inverse image p−1(U) can be written as a disjoint

union of sets Vα so that p restricted to each Vα is a homeomorphism onto U . If every

point b of B has a neighborhood U that is evenly covered by p, then p is called a

covering map. The reader should check that the maps described above are indeed

covering maps.

A space X is simply connected if it is path connected and if its fundamental group

is trivial, i.e., every closed loop in X can be homotoped to a point.

Lemma 23 ([?], Lemma 8.4.1). Let p : E → B be a covering map; let p(e0) = b0.

Any path f [0, 1] → B beginning at b0 has a unique lift to a path f̃ in E beginning at

e0.

Lemma 24 (Exercise 8.4.12(a), [?]). Let p : E → B be a covering map; let

p(e0) = b0. Let f : Y → B be continuous with f(y0) = b0. If Y is locally path

connected and simply connected then f can be lifted uniquely to a continuous map

f̃ : (Y, y0),→ (E, e0).

One of the uses we make of these topological facts is the following result that

allows us to reduce the Riemann mapping theorem to the case of bounded domains.

Lemma 25. Any simply connected planar domain, except for the plane itself, can

be conformally mapped to a bounded domain.

Proof. If the domain Ω is bounded, there is nothing to do. If Ω. omits a disk

D(x, r) then the map z → 1/(z − x) conformal maps Ω to a bounded domain. Oth-

erwise, translate the domain so that 0 is on the boundary and consider a continuous

branch of
√
z. The image is a 1-1, holomorphic image of Ω, but does not contain

both a point and its negative. Since the image does contain some open ball, it also

omits an open ball and hence can be mapped to a bounded domain by the previous

case.

�

4. Morera’s theorem and uniform convergence

Theorem 26 (Morera’s theorem). If f is defined on a disk D = D(0, r) and the

integral
∫
T
f(z)dz = 0 for every triangle in D, then f is holomorphic in D.
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Proof. Define F (z) =
∫ z
0
f(ζ)dζ, where the integral is over the line segment

from 0 to z. Consider the triangle with vertices 0, z, w with w close to z. Since the

integral of f around this triangle is zero,

F (z)− F (w) =

∫ z

0

f(ζ)dζ −
∫ w

0

f(ζ)dζ =

∫ z

w

f(ζ)dζ.

Since f is continuous, for any ǫ > 0 we can choose δ > so that |z − ζ| ≤ δ implies

|f(z)− f(ζ)| < ǫ and hence

|F (z)− F (w)− f(z)(z − w)| ≤ ǫ|z − w|.
This means F ′(z) exists and equals f . Thus F is holomorphic and hence is F ′ = f ,

as desired. �

Corollary 27. Suppose {fn} is a sequence of holomorphic functions on a do-

main Ω which converge uniformly on compact sets to a function f . Then f is also

holomorphic.

Proof. Choose any disk D ∈ Ω. For any triangle T in D,
∫
T
fndz = 0 since

fn is holomorphic. Since T is compact, we deduce
∫
T
fdz = 0 (uniform convergence

implies the integrals converge) and hence f is holomorphic onD by Morera’s theorem.

Thus f is holomorphic on all of Ω. �

5. Equicontinuity and compactness

Suppose (Y, d) is a metric space and let F be a subset of C(X, Y ), the continuous

functions from X to Y . If x0 ∈ X , we say the family is equicontinuous at x0 if for

any ǫ > 0 there is a neighborhood U of x0 so that d(f(x), f(y)) < ǫ for every x, y ∈ U .

If the family is equicontinuous at every point we simply say it is equicontinuous.

A family of functions F is called pointwise bounded if for every x {f(x) : f ∈ F}
is a bounded set (different bounds for different x are allowed). See, e.g., Exercise 5,

page 279 of Munkres’ Topolygy [].

Theorem 28 (Arzela’s theorem). If X is compact and {fn} ⊂ C(X,Rd) is point-

wise bounded and equicontinuous, then {fn} has a uniformly convergent subsequence.

Corollary 29. Suppose Ω is a planar domain and {fn} is a sequence of holomor-

phic functions mapping Ω into D. Then there is subsequence that converges uniformly

on compact subsets.
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Proof. Pointwise boundedness is obvious. To prove equicontinuity, fix a point

z0 ∈ Ω and D = D(z0, r) where r = dist(z0, ∂Ω) and let g(z) = z0 + rz map the unit

disk to D. Then hn = fn ◦ g is a holomorphic map of the unit disk to itself, hence is

a contraction of the hyperbolic metric, hence

|z − z0| ≤ rδ ⇒ ψ(, 0, z) ≤ δ ⇒ |hn(z)− hn(z0)| ≤ ψ(hn(z), hn(z0)) ≤ δ,

which is equicontinuity at z0. Now Arzela’s theorem applies. �

6. The Poisson integral formula

If f is holomorphic on D with continuous boundary values then the Cauchy inte-

gral formula implies (taking w = eiθ, dw = ieiθdθ)

f(0) =
1

2πi

∫

γ

f(w)

w
dw =

∫ 2π

0

f(eiθ)e−iθdθ
ieiθdθ

2π
=

∫ 2π

0

f(eiθ)
dθ

2π
.

If τ : D → D is a Möbius transformation sending 0 → z then f ◦τ is also holomorphic

on D and

f(z) = f ◦ τ(0) =
∫ 2π

0

f ◦ τ(eiθ)dθ
2π

=

∫ 2π

0

f(eiθ)|τ ′(eiθ)|dθ
2π

=

∫ 2π

0

f(eiθ)
1− |z|2
|z − w|2

dθ

2π

=

∫ 2π

0

f(eiθ)Pz(θ)
dθ

2π

where Pz(θ) is called the Poisson kernel. Since the kernel is real valued we also have

u(z) =

∫ 2π

0

u(eiθ)Pz(θ)dθ,

if u is the real part of a holomorphic finction (i.e., if u is harmonic).

The reader can check using the (Euclidean) law of cosines that

|z − w|2 = 1 + r2 − 2r cos(θ − ψ),

and thus that the Poission kernel is also given by the formula

Pz(w) =
1− r2

1− 2r cos(θ − ψ) + r2
,

where z = reiψ ∈ D and w = eiθ ∈ T.
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Clearly minimum and maximum of |z−w|2 are attained when w = z/|z| (w is the

radial projection of z) and w = −z/|z| respectively. Since this is the denominator of

Pz, the Poision kernel takes its maximum and minimum at these points and hence

satisfies estimates

1− r

1 + r
= Pz(−

z

|z| ≤ Pz(w) ≤ Pz(
z

|z| =
1 + r

1− r
.

If u is positive then replacing Pz by one of these bounds gives a bound for u(z) in

terms of its mean value, i.e.,

u(z) =

∫
Pz(e

iθ)u(eiθ)
dθ

2π
≤

∫
1 + r

1− r
u(eiθ)

dθ

2π
=

1 + r

1− r
u(0).

The analogous lower bound then gives

Theorem 30 (Harnack’s inequality). If u is positive and harmonic on D then

(
1− |z|
1 + |z|)u(0) ≤ u(z) ≤ (

1 + |z|
1− |z|)u(0).

In particular, if u is a positive harmonic function on D(z, 2r) then

max
D(z,r)

u(z) ≤ 9 min
D(x,r)

u(z).

If the “2” is replaced by some other λ > 1, we get a similar estimate with “9” replaced

by a constant depending only on λ. Note that this says that if u is a positive harmonic

function on D, then log u is a Lipschtiz function from the disk (with its hyperbolic

metric) to the reals (with the Euclidean metric) and the Lipschtiz constant does not

depend on u. This is a striking example of equicontinuity.

Harnack’s inequality holds on more general domains (with a larger constant).

Suppose u is a positive harmonic function on a domain Ω and that K is compact

connected set inside Ω. We can cover K by a finite number, N , of disks {Dj}, so that

the double of each disk is in Ω. Thus for any positive harmonic function on Ω, the

minimum and maximum values of u on any ball are within a factor 9 of each other.

This implies the minimum and maximum values of u over K are within a factor of

9N of each other. In other words:

Lemma 31. Suppose Ω is a domain and K ⊂ Ω is a compact set. Then there is

a constant C < ∞ so that for any two points z, w ∈ K and any positive harmonic

function on Ω u(z) ≤ Cu(w). In particular, any sequence {un} of positive harmonic
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functions on Ω has a subsequence which either tends to ∞ uniformly on every compact

subset of Ω or is uniformly bounded on each compact subset of Ω.

If f is holomorphic on Ω and 0 < |f(z)| < 1, Then − log |f(z)| = ℜ(−log(f(z)) is
harmonic and positive, so Harnack’s inequality applies. Thus any sequence of such

functions the limit is either non-vanishing or identically zero. This is:

Theorem 32 (Hurwitz’s Theorem). If {fn} is a sequence of non-vanshing holo-

morphic functions on a domain Ω, that converge uniformly on compact sets to a

limiting function f , then f is either identially zero or nowhere zero.

7. A proof of Riemann’s theorem

We can now begin the proof of the Riemann mapping theorem. Fix a point z0 ∈ Ω

and let F0 be the class of 1-1 holomorphic functions from Ω into the unit disk so that

f(z0) = 0. This proof breaks up into three stages:

(1) Prove F0 6= ∅.
(2) Prove there is an element f ∈ F0 which maximizes |f ′(z0)|.
(3) Prove this element maps Ω onto D.

Proof of (1): If Ω is bounded the first step is trivial; we can take a linear map

which shrinks Ω enough and moves it to the origin. Otherwise, apply Lemma 25 first.

Proof of (2): Let M = supf∈F0
|f ′(z0)|. Since |f | ≤ 1, the Cauchy estimate

(Corollary 8) implies |f ′(z0)| ≤ dist(z0, ∂Ω). Thus M is bounded (depending on z0,

but not on f).

Now choose a sequence so that f ′
n(z0) approaches the supremum M and use

Montel’s theorem to show there is a holomorphic limit. Clearly this function maps

into the unit disk and has the desired derivative at z0, so we only have to show it is

in F , i.e., show it is 1-1. Choose any w ∈ Ω and note that fn(z)− fn(w) is nowhere

vanishing on Ω \ {w}. By Hurwitz’s theorem then f(z)− f(w) is nowhere vanishing

or identically 0 and the latter case does not happen since |f ′(z0)| = M > 0 (M > 0

since F is non-empty). Hence f never takes the same value twice, as desired.

Proof of (3): If g ∈ F omits a point of D from its image we will show how to

construct another function in F with larger derivative at z0. Thus the maximizing

function must be onto.
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Suppose f ∈ F omits the value w Let τ and σ be Möbius transformations of the

disk to itself so that τ(w) = 0 and σ(τ(f(z0))) = 0. Let W = τ(f(Ω)). Then W

is a simply connected subdomain of the disk and omits 0 so there is a well defined

branch of z1/2 defined on Ω, call it S. Then g = σ ◦S ◦ τ ◦f is holomorphic on Ω, 1-1,

and maps z0 to 0. Moreover, σ ◦ S ◦ τ fixes the origin and is the composition of two

isometries and a strictly expanding map (all with respect to the hyperbolic metric), so

its derivative at 0 is strictly greater than 1 in absolute value. Thus |g′(z0)| > |f ′(z0)|,
as claimed.

Finally we should observe that the conformal map we have constructed is essen-

tially unique. Suppose f, g are two conformal maps of Ω to D which both send z0 to

0. Then f ◦ g−1 is a conformal self-map of D fixing the origin and hence is a rotation

by Schwarz’s Lemma (Lemma 21). Thus f and g differ only by a rotation. If we

require our map to satisfy f ′(z0) > 0, then it is uniquely determined.

Earlier we noted that Liouville’s theorem implies that the plane cannot be con-

formally mapped to the disk, so the claim in Riemann’s theorem is sharp.

8. Koebe’s method

The proof of Riemann’s theorem in the previous section seems non-constructive

at first glance: we use compactness to say a function maximizing a certain derivative

exists and argue by contradiction to show this map is 1-1, onto the disk. However, it

does describe a simple algorithm for mapping a bounded simply connected domain

Ω conformally to the disk with a given point z0 mapping to the origin:

(1) Find a linear map f : Ω → Ω0 ⊂ D with z0 mapping to 0.

(2) Assuming Ωn has been defined, find point w on ∂Ωn closest to 0.

(3) Choose Möbius transformations τ, σ of the disk to itself so that τ(w) = 0

and σ(
√
τ(f(z0))) = 0.

(4) Let Ωn+1 = σ(
√
τ(Ωn)).

(5) Repeat steps until point w is within specified distance of unit circle.

In Step 3 of the proof of Riemann’s theorem we merely stated that if f omitted

a point of the disk then we could increase the derivative by composing with the map

σ ◦ D ◦ τ . However, it is easy to see that the multiplicative factor of this increase

depends only on |w|, where w is the omitted point.
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Consider the map z → z2. By Schwarz’s lemma this is a strict contraction of the

hyperbolic metric, although the hyperbolic derivative tends to 1 near the boundary

as we can see from the explicit formula

∇H(z
2) =

2|z|
1 + |z|2 .

We will actually use the fact the the inverse map,
√
z is an expansion of the hyperbolic

metric in the following sense. SupposeW is a simply connected subdomain of D which

does not contain the origin. Then there is a well defined branch of
√
z on W and

since z2 is a contraction for the hyperbolic metric, we have

ψ(
√
z,
√
w) > ψ(z, w),

for any pair of points z, w ∈ W . We can actually be a little more precise and say

|∇H

√
z| ≥ 1 + |z|

2
√
z
.

If
√
z = 1− ǫ this becomes

|∇H

√
z| ≥ 1 + (1− ǫ)2

2(1− ǫ)
= 1 +

ǫ2

2(1− ǫ)
= 1 +O(|1− z|2).

From this we can prove:

Lemma 33. Suppose Ω ⊂ D is simply connected and omits the point w ∈ D. Let

τ, σ be Möbius self-maps of the disk τ(w) = 0 and σ(τ(f(z0))) = 0 and let S(z) be a

branch of
√
z root function on τ(Ω). Then

|(σ ◦ S ◦ τ)′(0)| ≥ 1 + |w|
2
√

|w|
.

Corollary 34. Suppose dn = dist(∂Ωn, 0) and m = 4/(1−
√
dn). Then dn+k >√

dn for k ≥ m. In particular, if d0 ≥ 1/2 then 1− dn = O(1/n).

Proof. Let r =
√
dn. As long as dn+k <

√
dn = r the derivative at 0 increases

by a factor of (1 + r2)/2r at each iteration. This is a contradiction if

(
1 + r2

2r
)k > r/dn = 1/r,

or

k ≥ log
1

r
/ log

1 + r2

2r
.
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A few simple estimates show

log
1

r
/ log

1 + r2

2r
≤ 2(1− r)/

1

2
(
1 + r2

2r
− 1) ≤ 4r

1− r
≤ 4/

√
dn,

so if k is larger than the right hand side, we get a contradiction. Thus dn+k >
√
dn

for k ≥ m.

If d0 > 1/2 we repeatedly take square roots of d0 to get sn = d2
−n

0 , these numbers

approach 1 geometrically fast and the number of iterations where dn is between sk

and sk+1 is at most O(s−1
k ), which grows exponentially in k. Thus the time to reach

sk is dominated by the time to cross between sk−1 and sk. Thus dn > 1 − ǫ after

about O(1/ǫ) iterations. �
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Figure 2. On the top left is a sudomain of the disk whose boundary
is parameterized by γ(t) = eit 1

3
(3+sin(t))). This is a polygon with 100

vertices defined by the points t = k/100, k = 1, . . . , 100. The next 11
figures show the first 11 iterations of Koebe’s method. The next figure
show more iterations.
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Figure 3. This shows the first 80 iterations of Koebe’s method for
the same domain as in Figure 2
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20 40 60 80 100
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Figure 4. Koebe’s method applied to a polygon. We have added
19 new, equally spaced vertices to the interior of each edge. On the
bottom we have graphed the absolute value of the vertex closest to the
origin at each iteration, up to 100 iterations.
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9. Caratheodory’s Theorem

Next we want to give conditions when the Riemann mapping has a continuous

extension to the boundary. This occurs iff the boundary is locally connected and the

hardest part of the proof is topological arguments that show the usual definition of

local connectedness is equivalent to a more useful version. We will simply accept the

following.

Theorem 35. Suppose Ω is a bounded simply connected plane domain. The

following are equivalent.

(1) If U is a relatively open subset of ∂Ω and z ∈ U , then there is a connected,

relatively open subset V so that z ∈ V ⊂ U .

(2) ∂Ω is a continuous image of a circle.

(3) for any δ > 0 there is an ǫ > 0 such that the following holds: if γ is a Jordan

arc in Ω with length ≤ ǫ, then at least one component of Ω \ γ has diameter

≤ δ.

Part (1) is the usual definition of local connectedness and part (3) is the version

we shall use (i.e. we will show that (3) implies the Riemann map has a continuous

boundary extension). In the course of the proof we will also use a few well known

results from real analysis that we explicitly state here:

Figure 5. An example of a domain with a non-locally connected
boundary. The Riemann map onto the interior of this domain fails to
have a continuous boundary extension at one point. Examples can be
constructed where it fails to have a continuous boundary extension at
any point.
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Fact 1: The Cauchy-Schwarz inequality
∫

I

f(x)g(g)dx ≤ (

∫

I

|f(x)|2dx)1/2(
∫

I

|g(x)|2dx)1/2.

Fact 2: If Ω1 ⊃ Ω2 ⊃ . . . are nested open sets, area(Ω1) < ∞ and ∩nΩn = ∅,
then area(Ωn) → 0.

Fact 3: A continuous function on D has a continuous extension to the boundary

iff it is uniformly continuous.

Theorem 36 (Caratheodory). Suppose Ω ⊂ C is simply connected and condition

(3) in Lemma 35 holds. Then the Riemann map f : D → Ω has a continuous

extension to f : D → Ω.

Proof. We assume ∂Ω satisfies (3) in Lemma ?? and will deduce that the Rie-

mann map f : D → Ω is uniformly continuous, i.e., we have to show that given any

ǫ, there is a δ > 0 so that z, w ∈ D, |z − w| ≤ δ implies |f(z)− f(w)| < ǫ.

Next we would like to assume area(f({z : 1
2
< |z| < 1})) < ∞. If Ω is bounded,

this is obvious since then f(D) = Ω has finite area. If Ω is unbounded, consider

τ(z) = 1/(z− f(0)). This maps Ω to a domain containing ∞ and τ ◦ f maps D(0, 1
2
)

to a neighbohood of ∞. The remainder of the disk is mapped to a bounded region,

hence has finite area. Rather than introduce a new symbol, we will let f denote the

composed map and Ω the new image.

Fix η > 0 and choose δ0 so small that area(f({z : 1 − δ0 < |z| < 1})) ≤ η.

Suppose δ < δ0 and fix w ∈ T. Let D be the disk of radius δ around D. Note that

area(f(D ∩ D)) ≤ area(f({z : 1− δ0 < |z| < 1})) ≤ η.

Let γr be the circular arc in D centered at w of radius r. Then

ℓ(f(γr)) ≤
∫

γr

|f ′(w + reiθ)|rdθ ≤ (rπ

∫

γr

|f ′(w + reiθ)|2rdθ)1/2.

Now square and integrate with respect to s ∈ (δ/2, δ),

∫ δ

δ/2

ℓ(f(γs))
2ds ≤ π

∫ δ

δ/2

∫

γs

|f ′(reiθ)|2r2drdθ

≤ δ

∫∫

D∩D
|f ′(reiθ)|2rdrdθ

≤ δarea(f(D ∩ D)).
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Thus the average value of ℓ(f(γr))
2 is at most 2η, so there is at least one value

r ∈ ( δ
2
, δ) with length less than this.

Since D does not contain 0, W = f(D ∩ D) does not contain z0 and hence if

δ < δ1 is small enough, W must have diameter less than ǫ. Thus if 1 − |z| < δ1/2

or 1 − |w| < δ1/2 and |z − w| < δ1/2, then both points lie in a δ1-ball around some

boundary point. Thus |f(w)−f(w)| ≤ ǫ by the argument above. If both 1−|z| ≥ δ1/2

and 1− |w| ≥ δ1/2 then both points lie in a compact subset of D and f is uniformly

continuous on D(0, 1− δ1/2) by compactness. Thus there is a δ2 so that for any two

points in this disk |z − w| ≤ δ2 implies |f(w) − f(z)| ≤ ǫ. Taking δ = min(δ1, δ2)

proves the result. �

Figure 6. By assumption, if a circular crosscut of the disk maps to
a curve of short length, it cuts off a subdomain with small diameter.

If the Riemann mapping f : D → Ω has a continuous extension, then ∂Ω is

obviously a continuous image of a circle. Thus using Lemma ??, we see that the

Riemann map has a continuous extension to the whole boundary iff ∂Ω is locally

connected. It is not to hard to deduce (3) of Lemma ?? directly; we will do this later

when we have Beurling’s lemma at our disposal (this says that the conformal image

of a set of small diameter in Ω also has small diameter in D). See Lemma ??.

The proof also shows the Riemann map extends continuously to a single point

w ∈ T if there is sequence of circular crosscuts γn centered at w so that f(γn) divides

Ω into two subdomains, and the one not containing f(0) has diameter tending to

zero. Such a sequence of crosscuts is closely related to the idea of compactifying a

domain using prime ends, but we will not discuss thus further here.
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10. Schwarz reflection

If ∂Ω is a polygon then Caratheodory’s theorem implies the conformal map fD →
Ω has a continuous extension to the boundary, but much more is true: f has a

holomorphic extension at every boundary point except the preimages of the vertices.

This follows from the well known:

Theorem 37 (Schwarz Reflection principle). Suppose Ω ⊂ H and let Ω∗ be the

reflection of Ω across R and let Ω0 be the interior of the closure of Ω ∪ Ω∗. Suppose

f is holomorphic on Ω, has a continuous extension to E = ∂Ω ∩ R and f(E) ⊂ R.

Extend f to Ω∗ by setting

f(z) = f(z̄).

Then the extended function is holomorphic on Ω0.

Proof. Supose f = u+ iv and z = x+ iy. Then

g(z) = f(z̄) = u(x,−y)− iv(x,−y) = a(x, y) + ib(x, y).

It is easy to check that a, b satisfy the Cauchy-Riemann equations (ax = ux = vy = by,

ay = −uy = vx = −bx) so g is holomorphic on Ω∗. Moreover, since f is real valued on

E, we see that f has a continuous extension to Ω0 which is holomorphic on Ω ∪ Ω∗.

We only have to show this extension is homomorphic on E.

Consider a small ball in Ω0 centered at a point of E. Let T be a triangle in the

ball. If such T does not intersect E, the integral is clearly 0. Similarly if T hits E at

one vertex of along one edge, for then we can write the integral as a limit of integrals

over curves that do not hit I and hence are zero.

Otherwise I divides T into two polygons whose interiors are contained in H and

L respectively. The integrals over the boundaries of these two pieces add up to the

integrals over T (since the sum differs from the integral over T by two integrals over

I in opposite directions). Moreover each piece has integral zero, for the same reasons

as above. �

The Schwarz reflection principle readily extends to reflections across boundary

arcs which are circular arcs (simply map then to real axis by a Möbius transforma-

tion).
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Figure 7. In the first case the integral is clearly zero and in the
second case it is clearly a limit of zero integrals. In the third case, we
can write the integral as the limit of the sum of two integrals inside the
half-planes.

11. The maximum principle

The Poisson integral formula says that if u is harmonic on a neighborhood of a

disk D = D(x, r), then

u(z) =

∫ 2π

0

u(x+ reiθ)Pz(θ)dθ,

and hence

|u(z)| ≤ max
∂D

|u|.
Moreover, equality can occur only if u is constant on the boundary of the disk (and

hence constant on the whole disk). This implies that a harmonic function on a domain

which attains a maximum value must be constant. This is the maximum principle

for harmonic functions.

If u is harmonic on a bounded domain Ω and has a continuous extension to the

boundary (which we also call u), then it must attain a maximum on the closure of Ω

(which is compact) and this value must be taken at a boundary point. If u does not

have a continuous extension to the boundary, the following is still true.

Lemma 38. Suppose u is a harmonic function on a bounded domain Ω and that

lim supz→∂Ω u(z) ≤M . Then u ≤M on Ω.

Proof. This is trivial if u is constant so suppose it is not and that u − M

takes a positive value somewhere. Then there is an ǫ > 0 so that {z ∈ Ω : u(z) >

M + ǫ} is non-empty. It does not contain any sequence tending towards ∂Ω, for this

would contradict our limsup assumption. Thus this set has a compact closure in Ω



90 2. THE RIEMANN MAPPING THEOREM

and u must attain a maximum value on this compact set. Thus u is constant, a

contradiction. Thus u−M ≤ 0 everywhere, as desired. �

The maximum principle implies that if two harmonic functions u, v both have

continuous extensions to the boundary which agree everywhere, the u − v ≤ 0 and

v− u ≤ 0, i.e., u = v. We will need the following generalization of this, which allows

for finitely many discontinuities on the boundary.

Lemma 39. [Lindelöf ’s Maximum Principle] Suppose u, v are bounded harmonic

functions on a bounded domain Ω which each have continuous boundary values ev-

erywhere on ∂Ω, except for a finite set E. If the boundary values of u, v agree except

on E, then u = v on Ω.

Proof. Suppose E = {z1, . . . , zn} and let

g(z) = log(diam(Ω))− 1

n

n∑

k=1

log |z − zk|.

Then g is positive and harmonic on Ω and tends to +∞ on the set E. Thus for any

ǫ > 0,

lim sup
z→∂Ω

ǫg(z) + v(z)− u(z) ≥ 0,

so by the maximum principle for harmonic functions,

v(z) ≥ u(z)− ǫg(z),

on Ω. Taking ǫ → 0 gives v ≥ u. Reversing the roles of v and u gives v = u, as

desired. �

This result can be extended to allow certian infinite exceptional sets (sets of zero

logarithmic capacity).

12. Existence of Schwarz-Christoffel parameters

In the first chapter we introduced the Schwarz-Christoffel formula and showed

that it always defines a holomorphic map of the disk whose boundary is a polygon

with the given angles (but it may be self-intersecting). We left open the question of

whether the conformal map onto every polygon can be represented in this way. We

can now prove this.
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We want to apply Lindelof’s maximuum principle to the arguments of the Rie-

mann map and the Schwarz-Christoffel map onto a polygonal region in order to show

the two maps are the same. First we have to verify that these arguement functions

are both bounded.

Lemma 40. Suppose G is a Schwarz-Christoffel map of the disk onto a polygonal

domain. Then arg(G′) is bounded.

Proof. By the Schwarz-Christoffel formula, arg(G′(w)) =
∑

n(αk − 1)[arg(zk −
w)− arg(zk)], which is clearly a finite sum of bounded functions. �

Lemma 41. Suppose F is a Riemann map of the disk onto a polygonal domain.

Then arg(F ′) is bounded.

Proof. By the Schwarz reflection principle, F has a holomorphic extension across

each arc of ∂D between preimages of the vertices. Thus F ′ is bounded outside any

neighborhood of the prevertices. Suppose w is the preimage of a vertex v at which

the interior angle of the polygon is θ. Then H = (F (z)− v)1/θ maps a neighborhood

of w to a half-disk with an arc of ∂D mapping to the straight edge. Thus by Schwarz

reflection, H has a holomorphic extension to a neighborhood of w and hence H ′ is

bounded in a neighborhood of w. Thus F ′ = θHθ−1H ′ and arg(F ′) = (θ−1) arg(H)+

arg(H ′). We deduce that arg(F ′) is also bounded in a neighborhood of w (but note

that |F ′| need not be bounded). Since arg(F ′) is bounded in sonme neighborhood of

every point of ∂D, compactness implies it is bounded on the whole circle. �

Theorem 42. The conformal map from the half-plane to a polygon satisfies the

Schwarz-Christoffel formula for some choice of A and C. Similarly for the map from

the unit disk to a polygon.

Proof. Let F : D → Ω be the conformal map of the disk to the interior of

the polygon, let {zk} be the preimages of the vertices and let G be the locally 1-1

holomorphic map given by the Schwarz-Christoffel formula with these parameters

(and the correct αk’s). We can choose C with |C| = 1 so that arg(CG′) = arg(F ′)

on the interior of every parameter interval (but these arguments are not defined at

the prevertices). By Lemmas ?? and 41 both these functions are bounded harmonic

functions, so Lemma 39 implies arg(CG′(z)) = arg(F ′(z)) on the interior of the disk.
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Since these are the imaginary parts of log(CG′) and logF ′ we deduce the real parts of

log(CG′) and logF ′ differ by a real additive constant and hence CG′ an F differ by a

real multiplicative constant. By putting this factor into C we may assume CG′ = F ′

thus CG and F differ by an additive constant, which we call A and we are done. �

13. Maps to a rectangle

Now that we have the Schwarz reflection theorem at our disposal, we can go back

and verify formula (14) in Chapter 5.

Lemma 43. Suppose Ω is a 1×R rectangle, let fR : Ω → D be conformal and let

P be the cross ratio of the four images of the vertices of Ω. Then

P = exp(−π/R) 1
16

∞∏

n=1

(
1 + exp(−2nπ/R)

1 + exp((−2n− 1)π/R)
)8.

Proof. Since cross ratio is invariant under Möbius transformations we may as-

sume fR maps Ω to the upper half-plane, H. To be even more specific, assume the

vertices of Ω are {0, R,R+i, i} and that these are mapped to {1,∞, 0, P} respectively.
See Figure 8.

Applying Schwarz reflection to each of the sides, we can extend fR to be conformal

on each of the adjacent, similar rectangles, and mapping these rectangles to the lower

half-plane. In fact, we can continue reflecting until the map is defined on the whole

plane, as illustrated in the bottom of Figure 8. The gray squares are mapped to the

upper half-plane and the white squares are mapped to the lower half-plane. When

there is more than one way to reach a rectangle in the grid by reflections, it is easy

to check that the alternate definitions of the extension agree. Moreover, since angles

are doubled at the corners of the rectangles we see that the values {0,∞, 1, P} are

taken on with multiplicity 2.

In other words, fR is holomorphic function on the plane, except for poles of order

2 at the points L1 = (2Z + 1)R + 2iZ and it has zeros of order two at the points

L2 = 2RZ+ i(2Z+ 1). Another function with this same property is

FR(z) = (
∞∏

n=−∞
(
1− exp(πi

R
(2ni+ (R + i)− z))

1− exp(πi
R
(2ni+R− z)

)2.

It is easy to check that the infinite product converges in both directions and defines

a function with periods 2R and 2i. The numerators vanish exactly iff z ∈ L1 and
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i R+i

0 R 0 P 1

Figure 8. We assume fR maps a rectangle to the upper half-plane
with the vertics mapped as shown. After repeated reflection, this ex-
tends to a map of the plane to the Riemann sphere, with poles at the
dark gray points, zeros at the light gray, value 1 at the black points
and value P ∈ (0, 1) at the white points.

the denominators vanish exactly on L2. Thus fR/FR is holomorphic off L2. In fact,

on L2 the poles cancel, so that fR/FR is actually holomorphic and periodic on the

whole plane and hence bounded. By Liouville’s theorem, fR/FR is constant. Since

fR(0) = 1, this means fR(z) = FR(z)/FR(0). In particular, fR(i) = FR(i)/FR(0), and

both terms on the right hand side are explicitly computable.

First rewrite the product by reindexing some of the terms

FR(z) =
∞∏

n=−∞

(1− exp(πi
R
(2ni+ (R + i)− z)))(1− exp(πi

R
(2ni− (R + i)− z)))

(1− exp(πi
R
(2ni+R− z)))(1− exp(πi

R
(2ni−R− z)))

.
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Now separate the n = 0 terms and combine the n and −n terms, and let q = e−πR,

p = e−iπz/R. This gives

1− exp(
πi

R
((R + i)− z) = 1− exp(πi) exp(

−π
R

) exp(
−πiz
R

) = 1 + qp,

and

1−exp(
πi

R
(2ni+(R+i)−z) = 1−exp(

−2πn

R
) exp(πi) exp(

−π
R

) exp(
−πiz
R

) = 1+q2n+1p,

Using these and similar formulas we get

FR(z) =
(1− exp(πi

R
((R + i)− z)))(1− exp(πi

R
(−(R + i)− z)))

(1− exp(πi
R
(R− z)))(1− exp(πi

R
(−R− z)))

×
∞∏

n=1

[
(1− exp(πi

R
(2ni+ (R + i)− z)))(1− exp(πi

R
(−2ni+ (R + i)− z)))

(1− exp(πi
R
(2ni+R− z)))(1− exp(πi

R
(−2ni+R− z)))

·(1− exp(πi
R
(2ni− (R + i)− z)))(1− exp(πi

R
(−2ni− (R + i)− z)))

(1− exp(πi
R
(2ni−R− z)))(1− exp(πi

R
(−2ni−R− z)))

]

=
(1 + qp)(1 + q−1p)

(1 + p)(1 + p)

∞∏

n=1

(1 + q2n+1p)(1 + q−2n+1p)(1 + q2n−1p)(1 + q−2n−1p)

(1 + q2np)2(1 + q−2np)2

=
(1 + qp)(1 + q−1p)

(1 + p)(1 + p)

∞∏

n=1

(1 + q2n+1p)(p+ q−2n+1)(1 + q2n−1p)(p+ q−2n−1)q−4n

(1 + q2np)2(p+ q−2n)2q−4n

=
(1 + qp)(1 + q−1p)

(1 + p)(1 + p)

∞∏

n=1

(1 + q2n+1p)(p+ q2n−1)(1 + q2n−1p)(p+ q2n+1)

(1 + q2np)2(p+ q−2n)2

If we set z = 0 (i.e., p = 1), this becomes

FR(0) =
(1 + q)(1 + q−1)

4

∞∏

n=1

(1 + q2n+1)2(1 + q2n−1)2

(1 + q2n)4

=
(1 + q)(1 + q−1)

4(1 + q)2
(1 + q2n−1)4

(1 + q2n)4

=
1

4q

(1 + q2n−1)4

(1 + q2n)4
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If we set z = i, then p = exp(−πiz/R) = exp(π/R) = 1/q, and we get

FR(i) =
(1 + 1)(1 + q−2)

(1 + q−1)2

∞∏

n=1

(1 + q2n)(q−1 + q2n−1)(1 + q2n−2p)(q−1 + q2n+1)

(1 + q2n−1p)2(q−1 + q2n)2

=
2(1 + q−2)

(1 + q−1)2

∞∏

n=1

(1 + q2n)(1 + q2n)(1 + q2n−2)(1 + q2n+2)q−2

(1 + q2n−1)2(1 + q2n+1)2q−2

=
2(1 + q−2)

(1 + q−1)2

∞∏

n=1

(1 + q2n)2(1 + q2n−2)(1 + q2n+2)

(1 + q2n−1)2(1 + q2n+1)2

=
4(1 + q)2(1 + q−2)

(1 + q2)(1 + q−1)2

∞∏

n=1

(1 + q2n)4

(1 + q2n−1)4

= 4
∞∏

n=1

(1 + q2n)4

(1 + q2n−1)4

Thus

P = fR(i) = FR(i)/FR(0) = 16q
∞∏

n=1

(
1 + q2n

1 + q2n−1
)8 = 16e−π/R

∞∏

n=1

(
1 + e−2nπ/R

1 + e−(2n−1)π/R
)8

�
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Figure 9. A plot of the function R → P . As expected it tends
exponentially fast to 0 and 1 as R → 0, R → ∞ respectively. Note 11

2
as required by symmetry.

Thus we have explicit (if somewhat involved) parameters for the Schwarz-Christoffel

map onto any rectangle. A similar proof shows

Q(R) =
∞∏

n=1

(
1− q2n−1

1 + q2n−1
)8.





CHAPTER 3

Representing conformal maps

We have seen that a conformal map from the disk onto a polygon is determined by

the numbers A,C, {zk}, {αk}, i.e., if we record these numbers then we “know” what

the map is via the Schwarz-Christoffel formula. But what is the most convenient

way to plug the parameters into the formula and compute an image point? We saw

in the first Chapter than we can compute the power series expansion of the map at

the origin, but that this converges slowly and that even for some simple polygons,

very many terms are needed to give a good appoximation. In this chapter we will

dicuss two ways to get around this problem: using multiple power series in disks that

cover the unit disk or using numerical integration to directly evaluate the Schwarz-

Christoffel formula.

1. The Carleson decomposition

Figures ?? and ?? indicate that using power series to evaluate conformal maps will

be slow and inaccurate in general. This is because the accuracy of the power series

decreases as we approach the radius of convergence (which is the just the distance

from the center of the series to the closest singularity). However, if a power series

has radius of convergence r and we only evaluate it within distance λr of the center

(with λ < 1, then the accuracy is O(λn). So we want to compute several power

series expansions for
∫ ∏

(1 − w
zk
)αk−1 with different centers, so that for any z ∈ D

we can find one of these expansions whose center is close enough to z to give a good

approximation. The tool we use for this is the Carleson decomposition of the disk

associated to the set of singularities S = {zk} ⊂ T.

Given an interval I ⊂ T, the corresponding Carleson box Q is the region in the

disk of the form {z = x + iy : z/|z| ∈ I, 0 < 1 − |z| < |I|}. The “top-half” of Q is

T (Q) = {z ∈ Q : 1−|z| > |I|/2}. This will be called a Whitney box, and its Euclidean

diameter is comparable to its Euclidean distance from T (abusing notation we may

97
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also call them Whitney “squares”). When I ranges over all dyadic intervals (i.e., all

intervals of the form [j2−n, (j + 1)2−n]), the corresponding Whitney boxes partition

the disk into pieces with approximately unit hyperbolic size. Carleson squares are

named after Lennart Carleson who used them in his solution of the corona problem

and they are now ubiquitous in function theory [?], [?].

Dyadic Carleson squares form a tree under intersection of the interiors. Each

square has a unique parent and two children. The parent of a dyadic Carleson square

Q will be denoted Q∗. This obviously also induces a tree structure on Whitney boxes.

We will say two dyadic Whitney boxes are neighbors if they are the same size and

adjacent; each box therefore has a “left” and a “right” neighbor. One of these is a

“sibling” in the sense that it shares a parent, while the other does not.

The decomposition will always begin with a root disk, which we take to be the disk

of radius 1/2 around the origin. We will call this the unique type 1 piece. We break

the unit circle into 16 intervals using equally spaced points starting at 1 (we could use

other values than 16, but this will give decomposition pieces that are “roundish”).

Let this list be denoted L. For each interval, compute three numbers: the length,

|I|, of the interval, the distance, d(I, S), to the closest point of S (which is zero if

the interval contains this point) and the distance df (I, S) to the second closest point.

The f stands for “feature” since this distance is sometimes called the feature distance

in the computer science literature.

(1) If df (I, S) ≤ 4|I| then we say I is type 2 and we add the Whitney box with

base I to the decomposition. The interval I is divided into two disjoint,

equal length subintervals and each of these is added to the list L of intervals

for testing. The interval I is removed from L. For these intervals there are

at least two points of S that are fairly close to I (when compared to |I|).
(2) If df (I, S) > 4|I| and d(I, s) > |I| then call I type 3 and let the Carleson

square with base I be added to the decomposition. No new intervals are

added to L. These intervals are “far” from all points of S in the sense that

tripling the interval misses all points of S.

(3) If df (I, S) > 4|I| and d(I, s) < |I| then call I type 3 and let the Carleson

square with base I be added to the decomposition. No new intervals are
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Figure 1. A decomposition of the disk into Whitney squares. There
is a central disk which has 16 children, each of which has 2 children, and
so on towards the boundary. The choice of 16 and 2 is arbitrary, but
made here so that the Whitney boxes are “roundish” and so that each
box is contained in a disk whose double is still in the unit disk. This
means that any holomorphic function on the unit disk has a power se-
ries expansion around the center of each Whitney box which converges
geometrically fast on the box.

added to L. These intervals are close to some point of S (there is one

contained in its triple) but far from all other points of S.

No interval created in this way can be shorter than 1
10

the distance ǫ between the

two closest points of S, and the created intervals are all disjoint, so the number of

created intervals is at most O(n log 1
ǫ
). This upper bound is attained if we take 2n
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points with two points in each ǫ-neighborhood of a different nth root of unity. If the

points of S are more evenly spaced then the number of decomposition pieces is more

like O(n).

Note that crowding of the z-parameters leads to more pieces in our decomposition.

We shall see later that the extra effort needed to deal with crowding of the prever-

tices in S is roughly the same as N , the number of distinct pieces in the Carleson

decomposition for S.

By adding a fifth type of decomposition piece, called an “arch”, it is possible to

guarantee that there are at most O(n) pieces with a constant that is independent of

n and the geometry of S. However, on the arches, the representation of the function

is not with a power series, but with a Laurent series. While the arches provide a fast

method if we assume infinite precision computations, if we stick to finite precision

calculations then the extra space needed to deal with the Laurent series in the arches

is about the same as the number of Whitney boxes that would be needed to fill in

the arch and convert “the arched decomposition” into a “regular decomposition”.

Moreover, constructing the arched decomposition requires some more sophisticated

ideas from computational geometry (namely the medial axis of the set S). For all

these reasons, will leave the discussion of arches until later.

Figure 2. Two Carleson decompositions associated to dif-
ferent finite sets on the boundary. On the left is the set
{0, 0.000628319, 3.14159, 3.14222}. On the right is the set
{0, 1.5708, 3.14159}.
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On each of the type 1, 2 and 3 pieces, we can compute a power series for
∫ ∏n

k=1(1−
w
zk
)αk−1. The center of the series is the “center” of the box. The radius of convergence

is the distance to the nearest point of S (or more precisely the nearest point where

αk 6= 1). By construction, each decomposition piece lies inside a compact subdisk of

the disk of convergence and the ratio of these disk is bounded away from 1 uniformly.

Thus the power series associated to a piece converges geometrically fast on that piece.

The power series for adjacent pieces may not agree, so we have to make them

consistent. We take the power series for the root piece as is. We then compute the

images of the 16 points on the boundary of the root piece which are the endpoints of

the top edges of its children. Then for each child of the root we choose a, b so that

a + bf agrees at these two points with the values compute for the root. In general,

if we have a series for a type 2 piece we compute the images of the two endpoints of

its bottom edge and for the midpoint of the bottom edge. The maps for each of its

children are then normalized by a linear map to agree with the parent map at the

two endpoints of its top edge. Continuing is this way we can define a map from the

union of type 1, 2 and 3 edges.

The type 3 boxes are clustered into groups, one corresponding to each of the

components of T \ S. By computing the images of two points on each of these

components we can compute the line that the image boundary segment lies on. Doing

this for the two components on either side of a point of S and computing their

intersecting, we can find that vertex of the image polygon that corresponds to that

parameter value. Thus we can compute all the vertices of the image polygon, using

only the expansions on type 1, 2 and 3 pieces. For purposes of iteratively finding the

parameters, this is all that is needed.
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Figure 3. The top shows the Whitney-Carleson decomposition of the
disk corresponding to six equidistributed points. The bottom shows the
image of each box of type 1, 2 and 3 under a degree 10 polynomial,
as derived in the text. The figure is rotated compared with the tar-
get because we have not yet normalized to find the A and C in the
Schwarz-Christoffel formula. However, given the image above we can
compute the lines containing the edges of the type 3 boxes and find the
intersection points for adjacent edges. Once we know these vertices, we
can rotate the figure to match the desired polygon. The result of this
normalizing step is shown in Figure 5
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Figure 4. Same as for Figure 7 but for a more complicated 20-
gon. By counting boxes in the image we can estimate the harmonic
measure of any side. For example, the horizontal edge at the top left
has measure about 2−15
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Figure 5. These are the normalized versions of Figures 7 and 8. We
have computed the lines containing each edge and their intersection
points and drawn the corresponding polygon (we have not cheated by
using the given vertices except to normalize our figures to have the same
first edge, thus setting A and C in the Schwarz-Christoffel formula).
Note that the images of the type 4 boxes are not shown. We will see
how to draw them in the next section. However, this final step is not
needed if all we want is to compute the location of the vertices for use
in a iterative solver.
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2. An expansion around the singularities

We have already seen how to compute quick convergent power series expansions

for the Schwarz-Christoffel map on the boxes of type 1, 2 and 3. This map need

not have such an expansion on a type four box if that box contains a singularity,

or it map not converge well, if the singularity is outside the box but nearby in an

adjacent box. Suppose Q is a type 4 box, zk ∈ T is the nearby parameter and vk is

the vertex of the image polygon corresponding to this parameter (recall that we can

compute vk using our computation on the type 3 boxes). Let θk be the interior angle

of the polygon at this vertex. Suppose f : D → Ω is our conformal map. Let τ be a

Möbius transformation that maps the upper half-plane to the unit disk with zk → 0,

−zk → ∞ and 0 → i, i.e.,

τ(z) = −iz − zk
z + zk

, τ−1(z) = zk
1 + iw

1− iw
.

Choose r1 > r2 > 0 so that the disks D(0, rj), j = 1, 2 are mapped by τ−1 to disks

D2 ⊂ D1, so that D2 contains all the type 4 boxes associated to zk and ∂D1 ∩ D is

contained in the union of boxes of type 1, 2 and 3. Then

g(z) = λ1(f(τ
−1(r1z))− vk)

π/θk ,(10)

maps D ∩ H to a neighborhood of 0 in some half-plane whose boundary contains 0

and by choosing a constant λ1 with |λ1| = 1 correctly, we may assume g(z) maps

the upper half-plane to itself. Thus by the Schwarz Refection Principle g has an

holomorphic extension across the real line (at least in a neighborhood of 0 an so we

can write

g(z) =,

(we can drop the zero term since g(0) = 0 by definition). Moreover,

f(z) = vk + [λ2

∞∑

k=1

ak(τ(z)/r1)
k]θk/π,

where λ2 is chosen so the left hand side map into a cone of angle θk with the correct

direction.

So this gives us a nice, compact representation for f , if we can compute power

series for g. This can be done using a discrete Fourier transforms. Fix a positive

integer N and consider the Nth roots of unity RN = {wk} = {ei2πk/N}. Let V N be
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Figure 6. This illustrates how (10) is derived. We map the upper
half-plane to the disk with 0 going to one of the Schwarz-Christoffel
parameters (up arrow). Then we map to the polygon by f (across)
and then open the vertex to 180 degrees by a power map (the down
arrow). The resulting composition has a holomorphic extension to a
neighborhood of 0 by the Schwarz reflection principle. We can compute
the power series for this extension by sampling roots-of-unity on the
half-circle as shown, mapping them forward as shown and defining the
map on the corresponding roots-of-unity in the lower half-plane by
reflection. Then apply an FFT to the data to get the coefficients of the
power series.

the N -dimensional complex vector space of functions from RN to C. The functions

ek(z) = zk, k = 0, . . . N − 1 form an orthonormal basis with respect to the inner

product

〈f, g〉 = 1

N

N−1∑

k=0

f(wk)g(zk),

as can easily be seen by verifying

‖en‖2 =
1√
N

N−1∑

k=0

f(wnk )w
n
k =

1

N

N−1∑

k=0

1 = 1,
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〈em, en〉 =
1

N

N−1∑

k=0

wmk w
−n
k

=
1

N

N−1∑

k=0

(wm−n
1 )k

=
1

N

1− (wm−n
1 )N

1− wm−n
1

= 0,

where we have used the geometric formula
∑N

k=0 z
k = 1−zN

1−z and the fact that wm−n
1 )N(wN1 )

m−1 =

1 since w1 is an Nth root of unity. Therefore any function in VN can be written

f(z) =
N−1∑

k=0

ek〈f, ek〉 =
N−1∑

k=0

akz
k,

for z ∈ RN . Using the definition, each coefficient of f can be computed as a sum of

N terms, so the whole expansion can be computed in time O(N2). However, the Fast

Fourier Transform gives a O(n log n) algorithm for computing the same coefficients

and will be discussed in Section 5.

The function g defined above maps the upper half-plane to itself and we can define

g at the roots of unity that lie in the upper half-plane using (10) because we only

need to evaluate f at points that lie in type 1, 2 or 3 boxes. We then define g at

the roots of unity in the lower half-plane using g(z) = g(z̄). Then use the discrete

Fourier transform to define a polynomial of degree N − 1 g0 which agrees with g at

all the Nth roots of unity.

Unfortunately, this does not necessarily mean that g and g0 are close anywhere

else. If we start with g(z) = zN then the restriction to the Nth roots of unity gives

the constant 1 functions and the resulting g0 is also the constant 1. Fortunately, the

maps we want to approximate are conformal and so we can do better than this.

Later on we will prove distortion estimates for conformal maps that say that if g

is 1-1 and holomorphic on D(0, 2) then |g′(z)| ≤ 3|g′(0)| on D(0, 1). Lets assume for

the moment that g′(0) = 1. Let

g(z) =
∞∑

k=0

bkzk,
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be the power series for the function g and let

g0(z) =
N−1∑

k=0

akzk,

be the function derived using the discrete Fourier transform from the restriction of

g to the Nth roots of unity. The coefficients {bk} can be obtained from the Cauchy

integral formula as

bk =
1

2πi

∫

T

g(z)

zk+1
dz =

∫ 2π

0

g(eit)e−ik
dt

2π
.

Now break the unit circle into N arcs each of length 2π/N and centered at the Nth

roots of unity. Then on each arc, the product g(z)z−k has second derivative bounded

by O(k2) and therefore differs from a linear function by at most O(k2/N) on each

arc. Therefore

|
∫

Ij

g(eit)e−ik
dt

2π
− g(wj)w

k
j | = O(k2/N2).

Hence

|bk − ak| ≤ O(k2/N).

The coefficients {bk} satisfy |bk| = O(2−k), and therefore |ak| = O(max(k2/N, 2−k).

Let M = ⌊log2N⌋ and

g1(z) =
M∑

k=0

akzk.

So if r < 1 and |z| ≤ r, then

|g(z)− g0(z)| ≤
M∑

k=0

|ak − bk|rk
∞∑

k=M+1

|bk|rk +
N−1∑

k=M+1

|ak|rk

= O(
M3

N
+O(2−M) +O(r−M)

= O(
1

N
(logN +

1

1− r
)).

This tends to zero for any fixed r < 1 and N → ∞. This the series we have

constructed will uniformly approximate the conformal map.
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Figure 7. The top shows the Whitney-Carleson decomposition of the
disk corresponding to six equidistributed points. The bottom shows the
image of each box under a degree 10 polynomial, as derived in the text.
The vertices of the polygon are found by computing two points on each
edge using the type 3 boxes and then finding the intersection points of
the corresponding lines.
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Figure 8. Same as for Figure 7 but for a more complicated 20-
gon. By counting boxes in the image we can estimate the harmonic
measure of any side. For example, the horizontal edge at the top left
has measure about 2−15
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Figure 9. For the polygons in Figure 7 and 8 we have used the
multiple power series representation to plot the images of the circles
of radius 1− 2−n and the radial segments that end at the vertices. As
before, polynomials of degree 10 are used for all approximations.
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Figure 10. Images of the Whitney boxes for the second generation
von Koch snowflake.
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Figure 11. Level lines and radial images for the second generation
von Koch snowflake. In the top picture the origin is mapped to the
center of the snowflake and in the bottom the origin is mapped close
to the boundary.
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3. Gauss-Jacobi quadrature

The multiple power series described above have the advantage of covering the

whole unit disk, so that to evaluate the conformal map at any point we merely have

to decide which decomposition box contains the point and sum the corresponding

power series. However, if we only want to evaluate the map at a few points, it may

not be worth building the map everywhere. For example, in order to use certain

iterative methods to estimate the unknown z-parameters, we only need to compute

the vertices of the image polygons. In this case, it may be faster simply to numerically

evaluate the integral in the Schwarz-Christoffel integral.

There are at least two choices: integrate f ′ on a ray from the origin to each

parameter value (to find the position of the corresponding vertex relative to 0) or

integrate |f ′| along the boundary arc between two parameters (to get the length of the

corresponding polygonal side, which, with the known angles, is enough to determine

the polygon). The boundary integral has the advantage of being real valued, whereas

the interior integral in complex valued.

Suppose w is defined and integrable on [a, b] and we want to evaluate

∫ b

a

p(t)w(t)dt,

for p ∈ Pn (the polynomials of degree n). Think of w = 1 or w(t) = (t − a)α as

the main examples. If we are given any n+ 1 distinct points {xk}n0 ⊂ [a, b] then p is

determined by its values at these points, i.e., the map

p→ {p(x0), . . . p(xn)}

is an invertible map Pn → R
n. Thus there must be real numbers wk so that

∫ b

a

p(t)w(t)dt =
n∑

k=0

wkp(xk),(11)

holds for all p ∈ Pn.
What are these weights more explicitly? Given the point set {xk}n0 define the

Lagrange polynomials

Lk(x) =
∏

0≤j≤n,j 6=k

x− xj
xk − xj

.
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This is equal to 1 at xk and equal to 0 at the other xj ’s. We must have

p(x) =
n∑

k=0

p(xk)Lk(x),

for any p ∈ Pn, since both sides are degree n polynomials that agree at n+ 1 points.

Thus
∫ b

a

p(x)w(x)dx =

∫ b

a

n∑

k=0

p(xk)Lk(x)w(x)dx =
n∑

k=0

p(xk)[

∫ b

a

Lk(x)w(x)dx].

Thus (11) holds with wk =
∫ b
a
Lk(x)w(x)dx.

We can simplify this further by noting that

Lk(x) =
∏

0≤j≤n,j 6=k

x− xj
xk − xj

=
pn(x)

(x− xk)p′n(xk)
,

since both sides are degree n polynomials that are 1 at xk and 0 at xj, j 6= k. Thus

wk =

∫ b

a

pn(x)

(x− xk)p′n(xk)
w(x)dx.(12)

The discussion so far assumes that we are given the points {xk}. If we are allowed
to choose these points, then we have n+1 additional degrees of freedom, so we might

hope to correctly evaluate integrals for even higher degree polynomials. In fact, we

can choose n+1 points {xk}n0 so that (11) holds for all polynomials of degree ≤ 2n+1.

The secret is to choose a polynomial p of degree n+1 which is orthogonal to every

polynomial q of lesser degree, i.e., so that

〈p, q〉w =

∫ b

a

p(t)q(t)w(t)dt = 0,

for all q ∈ Pn. Now let {xk} be the zeros of p and let {wk} be the weights which

make (11) true for polynomials of degree ≤ n. If f is a polynomial of degree ≤ 2n+1,

then long division of polynomials shows that we can write f = a+ bp where a, b are

polynomials of degree ≤ n. Thus
∫ b

a

f(t)w(t)dt =

∫ b

a

a(t)w(t)dt+

∫ b

a

b(t)p(t)w(t)dt

=
∑

k

wka(xk) + 0

=
∑

k

wkf(xk),
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where the last line holds since f = a on the zeros of p.

To see that it is not possible to increase the degree of f to 2n + 2, consider the

function
∏n

k=0(t − xk)
2. It vanishes at the points {xk} so

∑
k wkf(xk) = 0, but∫ b

a
f(t)w(t)dt > 0, at least if w > 0 since f > 0 except at n+ 1 points.

Lemma 44. For orthonormal polynomials we have

wk =
kn
kn−1

〈pn−1, pn−1〉
pn−1(xk)p′n(xk)

,

where kn is the leading coefficient of pn (i.e., the coefficient of xn).

To prove this we need two preliminary results. The first is:

Lemma 45. Let

Kn(x, y) =
n∑

k=0

pk(x)pk(y).

Suppose K(x, y) is a polynomial of degree n in both x and y. Then

〈p(x), K(x, y)〉w(x) = p(y),

holds for every polynomial p of degree n iff K = Kn.

Proof. If p is polynomial of degree ≤ n then it has a n expansion in terms of

the basis p(x) =
∑
ampm(x), so

〈p(x), Kn(x)〉w = 〈
∑

ampm(x),
∑

pk(x)pk(y)〉w
=

∑

m,k

ampk(y)〈pm(x), pk(x)〉w

=
∑

k

akpk(y)

= p(y),

so the equality holds when K = Kn. Conversely, some equality holds for K and all

p. Fix w and choose p(x) = Kn(x, w). Then

〈Kn(x, w), K(x, y)〉w = Kn(y, w).

But by our earlier calculation kn has the reproducing property so

〈K(x, w), Kn(x, y)〉w = K(y, w).

Since the two left hand sides equal the same integral, we deduce K(y, w) = Kn(y, w)

for any y, w, which proves the lemma. �
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The second preliminary result we need is:

Theorem 46 (Christoffel-Darboux). With notation as above,

Kn(x, y) =
kn
kn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y

Proof. Let K(x, y) denote the right hand side above. The numerator is a poly-

nomial in x of degree ≤ n + 1 and vanishes when x = y, so K(x, y) is actually a

polynomial in x of degree ≤ n. Similary for y. Thus to show K = Kn we only have

to show it has the reproducing property of the previous lemma.

A bit of expanding and using 〈pn, pn+1〉w = 0 shows

〈p(x)m,K(x, y)〉w =
kn
kn+1

〈(pn+1(x)pn(y)− pn(x)pn+1(y)),
p(x)− p(y)

x− y
〉w

+
kn
kn+1

p(y)〈pn+1(x),
pn(y)− pn(x)

x− y
〉w

+
kn
kn+1

p(y)〈pn(x),
pn+1(x)− pn+1(y)

x− y
〉w

Note that (p(x)− p(y))/(x− y) has degree ≤ n− 1 as a polynomial in x and hence

is orthogonal to pn. Thus the first inner product is 0. Similarly for the second inner

product. To compute the third inner product, write

kn
kn+1

p(y)
pn+1(x)− pn+1(y)

x− y
= kn[

yn+1 − xn+1

y − x
+ . . . ]

= knx
n + . . .

= pn(x) + q(x, y),

where q is a polynomial of degree ≤ n − 1 and hence orthogonal to pn. Thus the

third inner product equals 〈pn, pn〉w = kn+1/kn, and hence

〈p(x)m,K(x, y)〉w = p(y).

By the previous lemma this implies K = Kn, as desired. �

Lemma 44. We already know from (12) that

wk =
1

p′n(xk)

∫ b

a

pn(x)

x− xk
w(x)dx
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Since pn(xk) = 0,
∫ b

a

pn(x)

x− xk
w(x)dx =

1

pn−1(xk)

∫
pn(x)pn−1(xk)

x− xk
w(x)dx

=
1

pn−1(xk)

∫
pn(x)pn−1(xk)− pn−1(x)pn(xk)

x− xk
w(x)dx

=
1

pn−1(xk)

kn
kn−1

∫
Kn(x, xk)w(x)dx

=
kn

kn−1pn−1(xk)
.

�

For more general functions, the difference between out discrete estimate and the

actual integral can be bounded as follows:

En(f) =

∫ b

a

f(t)w(t)dt−
∑

k

wkf(xk) =
f (2n)(ζ)

(2n)!k2n
,

where ζ is some point in (a, b) and kn is the coefficient of the power tn in p(t). For

Schwarz-Christoffel integrals, the most relevant case is when w is a Jacobi weight

w(t) = (1− x)α(1 + x)β,

when this estimate is known to be (see []),

En(f) = f (2n)(ζ)
22n+α+β+1Γ(n+ α + 1)Γ(n+ β + 1)Γ(n+ α + β + 1)n!

Γ(2n+ α + β + 1)Γ(2n+ α + β + 2)(2n)!
.

If α = β = 0 then w = 1 and p is a Legendre polynomial. Then the error bound

simplifies to

En(f) = f (2n)(ζ)
22n+1(n!)4

(2n+ 1)((2n)!)3
.

Consider a simple case like f(t) = et. Then all the derivatives of f are bounded

on [−1, 1] and using Stirling’s formula

n! ∼ nne−n
√
2πn,

we see that

En(e
t) = O(n−2n).

On the other hand, the nth order Taylor series for et only approximates it to within

1/n! ≫ n−n on [−1, 1]. Thus the numerical integration using n points should give

about twice as many correct digits as term-by-term integration of the nth order power
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series. Of course, we can just double the number of terms in the power series to obtain

the same accuracy.

Even for fairly small n, both error estimates will be less than machine precision,

so a practical comparison would have to estimate the work to produce the approxi-

mations. Very roughly, if f(t) =
∏N

j=1(1− t
zj
)αk−1 is the sort of function that arises in

the Schwarz-Christoffel formula, then naively, it takes N multiplications to evaluate

f at one point and so takes O(nN) operations to compute the Gauss-Jacobi approx-

imation to the integral. To compute the power series expansion, we have to multiply

N individual power series each of length n. Naively multiplication of two of these

takes O(n2), but the fast Fourier transform allows this to be done in O(n log n). Thus

about o(Nn log n) work is needed to compute the integral via power series, which is

only slightly worse. This does not seem to be a decisive win for either method (es-

pecially since we probably only need n ≤ 20 to attain machine precision), so any

practical comparison boils down to estimating the size of the multiplicative constants

implicit in the big-O estimates. This depends on the particular implementations, and

we will not address it further.

So efficient numerical integration is possible if we can

(1) find pn+1 ∈ Pn+1 so that pn+1 ⊥ Pn and ‖pn+1‖w = 〈pn+1pn+1〉w = 1,

(2) find the zeros {xk} of pn+1

(3) find the weights {wk}.

The first step is the main difficulty. Once we have the polynomial p, we can use

Newton’s method to find the roots of pn+1 and the weights are given by

wk = −kn+1

kn

1

pn+1(xk)p′n(xk)
.

Suppose {pk}n0 are orthonormal polynomials of degree k and the coefficient of

xk in pk is ck. We can find a polynomial (orthogonal to Pn, but not necessarily of

unit norm) pn+1 by taking any (n+ 1)st degree polynomial p and subtracting aways

its orthogonal projection onto each of the 1-dimensional subspaces corresponding to

these vectors, i.e.,

pn+1(x) = p(x)−
n∑

k=0

pk(x)〈p, pk〉w.
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Since we get to choose p, we take p = xpn, so that

pn+1(x) = xpn(x)−
n∑

k=0

pk(x)〈xpn, pk〉w

= xpn(x)− pn(x)〈xpn, pn〉w − pn−1(x)〈xpn, pn−1〉w −
n−2∑

k=0

pk(x)〈pn, xpk〉w

= xpn(x)− pn(x)〈xpn, pn〉w − pn−1(x)〈xpn, pn−1〉w
= pn(x)(x− 〈xpn, pn〉w)− pn−1(x)〈xpn, pn−1〉w
= pn(x)(x− an)− pn−1(x)bn

We have used the facts that 〈xf, g〉w = 〈f, xg〉w and that pn is perpendicular to xpk

if k < n− 1. The polynomial constructed is not necessarily of unit norm, but we can

fix this by replacing pn+1 by
pn+1

‖pn+1‖w
.

To implement the method we have to be able to compute the recursion coefficients

an = 〈xpn, pn〉w
bn = 〈xpn, pn−1〉w
cn = ‖pn+1‖w = ‖pn(x− an)− pn−1bn‖w.

Recall that each of these inner products is an integral of the form
∫ b

a

f(t)w(t)dt.

We already know pn (by induction) so we could find its roots and use these to exactly

evaluate such integrals for polynomials of degree ≤ 2n − 1. However, the inner

products above involve polynomials of degree up to 2n+1, and using the roots of pn

will definitely give a wrong answer for
∫ b
a
tp2n(t)w(t)dt. Therefore these coefficients

should be computed by other means.

For evaluating Schwarz-Christoffel integrals, we will only need to consider the case

of Jacobi weights with a singularity at one endpoint (or possibly neither endpoint),

i.e., weights of the form w(x) = (x − a)α on the interval [a, b]. However, we can

compute an integral of the form
∫ b

a

(
n∑

k=0

akx
k)(x− a)αdx,
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using the following observation. A polynomial p(x) =
∑n

k=0 akx
k has a Taylor ex-

pansion around any point, including the point a. This Taylor expansion, must also

be a polynomial of degree n. Thus we can write

n∑

k=0

bk(x− a)k = p(x) =
n∑

k=0

akx
k.

Then

∫ b

a

(
n∑

k=0

akx
k)(x− a)αdx =

∫ b

a

n∑

k=0

bk(x− a)k(x− a)α

=
n∑

k=0

bk

∫ b

a

(x− a)k+αdx

=
n∑

k=0

bk
(b− a)k+α+1

k + α + 1
.

So now we have to compute the {bk} from the {ak}. Note that

n∑

k=0

akx
k =

n∑

k=0

ak(x− a+ a)k =
n∑

k=0

ak[
k∑

j=0

(x− a)jak−j
(
k

j

)
],

so be get b = (b0, . . . , bn) we just have to apply the matrix

M = (mjk) = ak−j ·
(
k

j

)
,

to the vector a = (a0, . . . , an). This can be done naively in O(n2), but Chapter 3,

Section 5 shows how to apply this n× n matrix to a vector in time only O(n log n).

If w(t) = 1, the Gauss-Jacobi polynomials specialize to the Legendre polynomials.

Here are the first ten Legendre polynomials for the interval [a, b] = [−1, 1], generated

by the recursion p0 = 1m pn+1 = ((2n+ 1)xpn − npn−1)/(n+ 1):
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P1(x) = x,

P2(x) = −
(
1

2

)
+

3x2

2

P3(x) =
−3x

2
+

5x3

2

P4(x) =
3

8
− 15x2

4
+

35x4

8

P5(x) =
15x

8
− 35x3

4
+

63x5

8

P6(x) = −
(

5

16

)
+

105x2

16
− 315x4

16
+

231x6

16

P7(x) =
−35x

16
+

315x3

16
− 693x5

16
+

429x7

16

P8(x) =
35

128
− 315x2

32
+

3465x4

64
− 3003x6

32
+

6435x8

128

P9(x) =
315x

128
− 1155x3

32
+

9009x5

64
− 6435x7

32
+

12155x9

128

P10(x) = −
(

63

256

)
+

3465x2

256
− 15015x4

128
+

45045x6

128
− 109395x8

256
+

46189x10

256
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4 1.999984228457721944767532072144696487557194483115
5 2.000000110284471879766230094981509385528232424409
6 1.999999999477270715570406402679408076715703270262
7 2.00000000000179047139889795228027253968825895516
8 1.99999999999999536042661896677198535555733701582
9 2.0000000000000000094136064072597719396414294942
10 1.9999999999999999999846379297653491184960575953
11 2.0000000000000000000000206013457173278936238709
12 1.999999999999999999999999976892865748089102133
13 2.000000000000000000000000000021998288119455387
14 1.999999999999999999999999999999982001465659210
15 2.00000000000000000000000000000000001279196248
16 1.99999999999999999999999999999999999999202885
17 2.00000000000000000000000000000000000000000439
18 2.0000000000000000000000000000000000000000000

Table 1. Approximating π
2

∫ 1

−1
cos(π

2
t)dt using the roots of the nth

Legendre polynomial.
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4 1.098570353649360421369450714823175319789315274643
5 1.098609241812471960520412741139524450426200089726
6 1.098612068116940643764150014765232798503789743085
7 1.09861227273834560823704233014754244788917670177
8 1.09861228751917825294586526806601222503431516024
9 1.0986122885853231560758415201023000760438081814
10 1.0986122886621485872861135030048483168226650251
11 1.0986122886676806754603956463038864607321813301
12 1.0986122886680788273422876748043133557118525407
13 1.098612288668107471652784971526472129102334449
14 1.098612288668109531789219669531325192092724242
15 1.09861228866810967992129366358635127998592044
16 1.09861228866810969057052073640076421999813943
17 1.09861228866810969133597337241914282263302985
18 1.0986122886681096913909859076206421219228913
19 1.0986122886681096913949391857585049768764517
20 1.0986122886681096913952232475480128000949082
21 1.098612288668109691395243657121154867973554
22 1.098612288668109691395245123430128760261856
23 1.09861228866810969139524522876968496262020
24 1.09861228866810969139524523633688431079351
25 1.09861228866810969139524523688045909892622
26 1.0986122886681096913952452369195041669804
27 1.0986122886681096913952452369223086820056
28 1.0986122886681096913952452369225101173798
29 1.098612288668109691395245236922524585148
30 1.098612288668109691395245236922525624245

Table 2. Approximating log(3) =
∫ 1

−1
1

2+t
dt using the roots of the nth

Legendre polynomial. Mathematica gives the first 50 digits of log 3 as
1.0986122886681096913952452369225257046474905578227
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Figure 12. Some example of Legendre polynomials. The roots of Pn
are the optimal n points to sample to compute an integral of the form∫ 1

−1
f(t)dt in the sense that they will give the correct answer if f if a

polynomial of degree at most 2n+ 1. Shown are n = 10, 20.
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Figure 13. Some examples of Jacobi polynomials. This is P10 and
P20 for the weight (1 + x)−1/2 (so there is only a singularity at the left
end of the interval).
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4. The fast Fourier transform

As we saw earlier in this chapter, efficient computation of the Schwarz-Christoffel

formula requires efficient manipulation of power series (either to compute the power

series of the map locally on each piece of our Carleson decomposition or to find the

orthogonal polynomials used in the numerical integration). Most of these manipula-

tions can be easily interpreted as applying a matrix to a vector and in this section

we will review known results about applying structured matrices to vectors quickly.

This summary is taken mostly from [?] and [?].

An n term power series centered at 0 has the form

p(z) =
n−1∑

k=0

anz
k,

and is polynomial of order n − 1. Thus p is also determined by its values at any

n distinct points {wk}nk=1 and as we saw earlier can be recovered from these values

using the Lagrange polynomials as

p(z) =
n∑

k=1

p(wk)Lk(z),

where

Lk(z) =
∏

1≤j≤n,j 6=k

z − wj
wk − wj

.

Given the values {p(wk)}, this formulation takes about O(n2) additions and multipli-

cations to evaluate the coefficients of p. Similarly, given the coefficients of p it takes

about O(n2) steps to evaluate it at the n points {wk}. Can we do these conversions

between the two representations of p faster. The answer is yes, at least if we assume

the {wk} are special points, namely the nth roots of unity.

In this case, the problem of evaluating a polynomial or recovering its coefficients

from its values is the same as computing a discrete Fourier transform. As before, fix

a positive integer N and consider the Nth roots of unity RN = {wk} = {ei2πk/N}.
Let V N be the N -dimensional complex vector space of functions from RN to C. The

functions ek(z) = zk, k = 0, . . . N − 1 form an orthonormal basis with respect to the

inner product

〈f, g〉 = 1

N

N−1∑

k=0

f(wk)g(zk).
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Therefore any function in VN can be written

f(z) =
N−1∑

k=0

ek〈f, ek〉 =
N−1∑

k=0

akz
k,

for z ∈ RN . Let FFT(N) denote the number of complex additions and multiplications

to compute all N of the numbers {ak} given the N numbers {f(wk}. Suppose that

N = 2M . We claim that

FFT(N) ≤ 2FFT(M) +O(N).

To prove this suppose {wj}N−1
0 are the Nth roots of unity and {vj}M−1

0 are the Mth

roots of unity. Then write down the definition of the coefficients and split the sum

into the sums over the even and odd terms:

ak =
1

N

N−1∑

j=0

f(wj)w
k
j

=
1

2M

2M−1∑

j=0

f(wj)w
k
j

=
1

2M

M−1∑

j=0

f(w(2j)w
k
2j +

1

2M

M−1∑

j=0

f(w2j+1)w
k
2j+1

=
1

2M

M−1∑

j=0

f(v(j)v
k
j +

1

2M

M−1∑

j=0

f(vjw1)v
k
jw

k
1

=
1

2
(bk + wki ck),

where {bk} is the discrete Fourier transform on RM of the function g(z) = f(z) and

{ck} is the discrete Fourier transform of the function h(z) = f(w1z). Both {bk}
and {ck} can be computed with FFT(M) operations and it clearly takes only O(N)

operations to combine them to get {ak}. Thus the claim is proved. If N = 2n is a

power of 2, then

FFT(N) = 2FFT(N/2) +O(N)

= 4FFT(N/4) + 2O(N/2) +O(N)

. . . = 2nFFT(2) +O(N) +O(N) + · · ·+O(N)

= O(N logN).
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There are O(N logN) FFT algorithms for every N , but we shall shall only present

the one above, for powers of 2.

Computing a discrete Fourier transform is the same as applying the Fourier matrix

to a vector, where the Fourier matrix is given by

Fn =




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) . . . ω(n−1)(n−2)




where ω is an nth root of unity. The fast Fourier transform (FFT) applies Fn to an

n-vector in time O(n log n) [?]. Fn is unitary and its conjugate transpose, F ∗, can also

be applied in O(n log n) time. The discrete Fourier transform (DFT) takes a n-long

sequence of complex numbers {ak}n−1
0 and a n-root of unity ω and returns the values

of the polynomial p(z) = a0+a1x+. . . an−1z
n−1 at the points z = {1, ω, ω2, . . . , ωn−1}.

Composing DFT with itself returns the original sequence times n. It turns our that

being able to apply this matrix to a vector quickly is the key to many other fast

computations.

5. Fast power series mainulations

Suppose f(z) =
∑n

k=0 akz
k and g(z) =

∑n
k=0 bkz

k. How fast can we multiply,

divide or compose these series? Let M(n) denote the number of field operations

it takes to multiply two power series of length n. The usual process of convolving

the coefficients shows M(n) = O(n2). A divide and conquer method of Karatsuba

and Ofman [?] improves this to O(nα) with α = log 3/ log 2, but the fastest known

method uses the Fast Fourier Transform [?], which shows M(n) = O(n log n) (two

power series of length n can be multiplied by taking the DFT of each, multiplying

the results term-by-term, taking the DFT of the result and finally dividing by n).

Other operations on power series are generally estimated in terms of M(n). For

example, inversion (finding the reciprocal power series, 1/f , given the series for f) is

O(M(n)). Like several other operations on power series, this is most easily proven

using Newton’s method (applied to series rather than numbers). For example, 1/f

is the solution of the equation 1
g
− f = 0. If g is an approximate solution with n > 0



130 3. REPRESENTING CONFORMAL MAPS

terms correct, then

g = g −
1
g
− f

−1/g2
= g − fg − 1

zn
gzn,

has 2n correct terms. The right side requires two multiplications and so the work to

compute inversions is O(M(n)) +O(M(n/2)) + · · ·+O(1) = O(M(n)).

Given inversion, one can divide power series (multiply f by 1/g) compute log f

(integrate f ′/f term-by-term) or exp(f) (solve log g = f by Newton’s method) all in

time O(M(n)).

Composition of power series is a little harder. Brent and Kung showed that

given power series f, g of order n and g0 = 0, the composition f ◦ g can be com-

puted in time Comp(n) = O(
√
n log nM(n)). Using FFT multiplication, this gives

O(n3/2 log3/2 n log log n). They also showed that reversion (i.e., given f find g so

f ◦ g(z) = z) can be solved using Newton’s method with the iteration

g → g − f ◦ g
f ′ ◦ g ,

which doubles the number of correct terms in g with every step. Thus Rev(n) =

O(Comp(n)) = O(
√
n log nM(n)).

Fortunately, there are some special cases when composition is faster. For example,

if we want to post-compose with a linear fractional transformation σ(z) = (az +

b)/(cz + d), this is the same as adding and dividing series, so is only O(M(n)).

Pre-composing by σ is more complicated. A function f is called algebraic if it

satisfies

Pd(z)f(z)
d + · · ·+ P0(z) = 0,

for some polynomials P0, · · ·Pd. Clearly every rational function is algebraic with

d = 1. The power series of such functions satisfy linear recursions and n terms of the

series can be computed in O(n). Moreover, pre-composition by algebraic functions

is fast; if f has p terms, g has q terms and is algebraic of degree d then the first n

terms of f ◦ g can be computed in time O(qd2 p(q−v)
n

M(n + pv) log n) where v is the

valuation of Pd (the largest power of z which divides Pd(z)) and q is the maximum

of the degrees of Pi, plus 1. For linear fractional transformations v = 0 and q = 2

so the time to pre-compose by such a map is O(M(n) log n) = O(n log2 n). (There is

an extensive generalization of the algebraic case to fast manipulations of holonomic
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functions, as developed by van der Hoeven [?], although we do not need to use it

here.)

This is too slow for our purposes. Fortunately, the only times we will have to pre-

compose with a Möbius transformation correspond to various manipulations of power

and Laurent series in the fast multipole method and all of these can be accomplished

in O(n log n) by fast application of Toeplitz, Hankel and Pascal matrices as shown

by Tang in [?]. A matrix is called circulant if each column is a down-shift of the

previous one, is called Toeplitz if it is constant on diagonals and called Hankel if it

is constant on antidiagonals. The general forms of these three types are:

C(x) =




x1 xn xn−1 . . . x2
x2 x1 xn . . . x3
x3 x2 x1 . . . x4
...

...
...

. . .
...

xn xn−1 xn−2 . . . x1



,

T(x) =




x0 x1 x2 . . . xn−1

x−1 x0 x1 . . . xn−2

x−2 xn x0 . . . xn−3
...

...
...

. . .
...

x−n+1 x−n+2 x−n+3 . . . x0



,

H(x) =




x−n+1 x−n+2 x−n+3 . . . x0
x−n+2 x−n+3 x−n+4 . . . x1
x−n+3 x−n+4 x−n+5 . . . x2

...
...

...
. . .

...
x0 x1 x2 . . . xn−1




A circulant matrix can be applied to a vector using three applications of FFT, i.e.,

because Cn(x) applied to a vector y is the same as IFFT(FFT(x) · FFT(y)). A

Toeplitz matrix can be embedded in a circulant matrix of the form

C2n =

(
Tn Sn
Sn Tn

)

where

Sn =




0 x−n+1 x−n+2 . . . x−1

xn−1 0 x−n+1 . . . x−2

xn−2 0 . . . x−3
...

...
...

. . .
...

x1 x2 x3 . . . 0
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To apply T to an n-vector y, append n zeros to y to get a 2n-vector, apply Cn and

take the first n coordinates of the result. This takes O(n log n) time. If H is a Hankel

matrix then R · H is a Toeplitz matrix where R is the permutation matrix which

is 1’s on the main anti-diagonal and 0 elsewhere, i.e., it reverses the order of the

coordinates of a vector. Thus H = R · (R · H), is a Toeplitz matrix followed by a

permutation and can clearly be applied in time O(n log n) as well.

The Pascal matrix is lower triangular with its (j, k)th entry being the binomial

coefficient Cj
i =

(
i
j

)
.




1 0 0 . . . 0
1 1 0 . . . 0
1 2 1 . . . 0
...

...
...

. . .
...

C0
n−1 C1

n−1 C2
n−1 . . . Cn−1

n−1




This matrix can be written as P = diag(v1) · T · diag(v2) where

v1 = (1, 1, 2!, 3!, . . . , (n− 1)!),

v2 =
1
v1

(term-wise) and T is the Toeplitz matrix

T =




1 0 0 . . . 0
1 1 0 . . . 0
1
2!

1 1 . . . 0
...

...
...

. . .
...

1
(n−1)!

1
(n−2)!

1
(n−3)!

. . . 1




The diagonal matrices can be applied in O(n) and the Toeplitz in O(n log n) and

hence so can P . Similarly for the transpose of P .

Now for the applications to fast multipole translation operators. There are three

types of conversions to consider. First, local to local translation

n−1∑

k=0

ak(z − a)k →
n−1∑

k=0

bk(z − b)k,

then multipole to local

n∑

k=0

an(z − a)−k →
n∑

k=0

bn(z − b)k,
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and finally, multipole to multipole,
n∑

k=0

an(z − a)−k →
n∑

k=0

bn(z − b)−k.

Let c = b− a and consider the local-to-local translation. We have

n−1∑

k=0

ak(w − c)k =
n−1∑

k=0

ak

k∑

j=0

wj(−c)k−j
(
k

j

)
,

so the matrix corresponding to local translation has kth column

((−c)k, (−c)k−1

(
k

1

)
, . . . , (−c)0

(
k

k

)
, 0, . . . , 0)t

or

LL =




1 −c c2 . . . (−c)n−1

0 1 −2c . . . (−c)n−2C1
n−1

0 0 1 . . . (−c)n−3C2
n−1

...
...

...
. . .

...
0 0 0 . . . 1




This matrix is equal to

diag(1,−z, . . . , (−z)n−1) · P′ · diag(1,−z−1, . . . (−z)−n+1),

where P ′ is the transpose of P . The diagonal matrices can be applied in O(n) time

and P ′ can be applied in O(n log n). Thus local-to-local translations can be done this

fast.

Similarly, the multipole-to-multipole and multipole-to-local transformations cor-

respond to applying the matrices

MM =




1 0 0 . . . 0(
1
1

)
c 1 0 . . . 0(

2
2

)
c2

(
2
1

)
c 1 . . .

...
...

...
. . .

...(
n−1
n−1

)
cn−1

(
n−1
n−2

)
cn−2

(
n−1
n−3

)
cn−3 . . . 1




ML =




−c−1 c−2 c−3 . . . c−n+1

−c−2 2c−3 −3c−4 . . .
−c−3 3c−4 −6c−5 . . .
...

...
...

. . .
...

−c−n+1 (n− 1)c−n −
(
n
2

)
c−n−1 . . . (−1n−1

(
2p−2,p−1

c

)−2n−1



.
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We can rewrite these matrices as

MM = diag(1, z, . . . , zn−1) · P · diag(1, z−1, . . . z−n+1),

ML = diag(1, z−1, . . . , z1−n) · P · P′ · diag(−z−1, z−2 . . . (−z)−n),

where P ′ is the transpose of P . As with local translations, these are compositions of

diagonal matrices (which can be applied in O(n)) and matrices that can be applied

in O(n log n) time.

We will also use structured matrices to compute expansions around∞ of functions

of the form
∫ dµ(z)

(z−w)k , k = 1, 2, 3. We will only consider the Cauchy transform (k = 1)

since the others can be obtained by term-by-term differentiation of that one. Suppose

f(z) =
∑n

k=0 akz
k is a power series for an analytic function, bounded by one and

defined on D and ϕ(x, y) is a polynomial in x and y of uniformly bounded degree.

Then the Cauchy transform

F (w) =

∫

S

f(z)ϕ(x, y)dxdy

z − w
,

is analytic in w outside S = [−1
2
, 1
2
]2, so has an expansion F (w) =

∑∞
k=1 bnw

−n.

Given {ak}p0, thinking of ϕ as fixed, we want to compute {bk}n1 . For each monomial

of the form zkxayb we can precompute the expansion using explicit formulas (O(n)

for each of O(n) monomials) and then we simply apply the resulting matrix to the

vector {ak}. Naively, we can do this in time O(n2).

Actually we can compute the expansion in only O(n log n). Let dµ = xaybdxdy

restricted to Q = [0, 1]2. We want to compute the expansion at ∞ of

F (w) =

∫∫
zn

w − z
dµ(z) =

∫∫
zn

1

w
(1 +

z

w
+ (

z

w
)2 + . . . )dµ(z)

=
∞∑

k=0

w−k−1

∫∫
zn+kdµ(z)

=
∞∑

k=1

ak,nw
−k,

where

ak,n = c(n+ k + 1, a, b) =

∫∫

Q

(x+ iy)n+k−1xaybdxdy.

Since ak,n only depends on k + n, A is a Hankel matrix. As noted above, a n × n

Hankel matrix can be applied to a n-vector using FFT in time O(n log n).
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The individual coefficients have explicit formulas involving Euler’s Beta function.

Evaluations for a few small values of a, b (as given by Mathematica are)

c(n, 0, 0) =
i− in+1 + 2(1 + i)n

2 + 3n+ n2
,

c(n, 1, 0) =
2i− in + in+ 2(1 + I)n((2− i) + n)

(1 + n)(2 + n)(3 + n)
,

c(n, 2, 0) =
i(6 + 2in + 5n+ n2) + 2(1 + i)n((4− 4i) + n((5− 2i) + n))

(1 + n)(2 + n)(3 + n)(4 + n)

c(n, 1, 1) = −1 + in − 2(1 + i)n(2 + n)

(1 + n)(2 + n)(4 + n)
,

c(n, 2, 1) =
−3(2i)in − n+ 2(1 + i)n(1 + n)((4− i) + n)

(1 + n)(2 + n)(3 + n)(5 + n)
,

c(n, 0, 1) =
−1− in+1(2 + n) + 2(1 + i)n((2 + i) + n)

(1 + n)(2 + n)(3 + n)
.

Thus n-term Laurent expansions for Beurling transforms of the appropriate degree

n polynomials can can be computed in time O(n log n).





CHAPTER 4

Some geometric function theory

In this chapter and the next we introduce ideas that are fundamental to geometric

function theory: modulus, capacity, distortion estimates and quasiconformal maps.

1. Conformal modulus

A conformal invariant is a number which is invariant under conformal mappings.

We are often in the situation where we wish to know the value of some conformal

invariant (e.g., that harmonic measure of the edge of a polygon) and are able to

estimate some other conformal invariant (e.g., the modulus of some path family in

the polygon). Using a known relation between the invariants, we can turn an esitmate

for one into an estimate for the other.

Probably the most important example of a conformal invariant is the (conformal)

modulus.

Suppose Γ is a family of locally rectifiable paths in a planar domain Ω and ρ is a

non-negative Borel function on Ω. We say ρ is admissible for Γ if

ℓ(Γ) = inf
γ∈Γ

∫

γ

ρds ≥ 1,

and define the modulus of Γ as

Mod(Γ) = inf
Ω

∫

M

ρ2dxdy,

where the infimum is over all admissible ρ for Γ. This is a well known conformal in-

variant whose basic properties are discussed in many sources such as Ahlfors’ book [?].

It reciprocal is called the extremal length of the path family. Modulus and extremal

length satisfy several properties that are helpful in estimating these quantities.

Lemma 47 (Conformal invariance). If F is a family of curves in a domain Ω and

f is a one-to-one analytic mapping from Ω to Ω′ then M(F) =M(f(F)).

137
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Proof. This is just the change of variables formulas∫

f(γ)

ρ ◦ fds =
∫

γ

ρds,

∫

f(Ω)

(ρ ◦ f)2dxdy =

∫

Ω

ρdxdy.

These imply that if ρ ∈ A(F) then ρ ◦ f−1 ∈ A(f(F)), and thus M(f(F)) ≤M(F).

We get the other direction by considering f−1. �

Lemma 48 (Monotonicity). If F1 and F2 are collections such that every γ ∈ F1

contains some curve in F2 then M(F1) ≤M(F2) and λ(F1) ≥ λ(F2).

The proof is immediate since A(F1) ⊃ A(F2).

Lemma 49 (Grötsch Principle). If F1 and F2 are families of curves in disjoint

domains then M(F1 ∪ F2) =M(F1) +M(F2).

Lemma 50. If F1 and F2 are families of curves in disjoint domains and every

curve of F contains both a curve from F1 and F2, then λ(F) ≥ λ(F1) + λ(F2).

Proof. If ρ1 ∈ A(Fi) for i = 1, 2, then ρ = tρ1 + (1 − t)ρ2 is admissible for F .

Since the domains are disjoint we may assume ρ1ρ2 = 0 everywhere so taking

t = t2M(F1) + (1− t2)M(F2),

gives

m(F) ≤ t2M(F1) + (1− t2)M(F2) = (M(F1)
−1 +M(F2)

−1)−1,

as required. �

The fundamental example is to compute the modulus of the path family connect-

ing opposite sides of a a× b rectangle; this serves as the model of almost all modulus

estimates. So suppose R = [0, b]× [0, a] is a a long and b high rectangle and Γ consists

of all rectifiable curves in R with one endpoint on each of the sides of length a. Then

each such curve has length at least b, so if we let ρ be the constant 1/b function on

R we have ∫

γ

ρds ≥ 1,

for all γ ∈ Γ. Thus this metric is admissible and so

Mod(Γ) ≤
∫∫

T

ρ2dxdy =
1

b2
ab =

a

b
.
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To prove a lower bound, we use the well known Cauchy-Schwarz inequality:

(

∫
fgdx) ≤ (

∫
f 2dx)(

∫
g2dx).

To apply this, suppose ρ is an admissible metric on R for γ. Every horizontal segment

in R connecting the two sides of length a is in Γ, so since γ is admissible,
∫ b

0

ρ(x, y)dx ≥ 1,

and so by Cauchy-Schwarz

1 ≤
∫ b

0

(1 · ρ(x, y))dx ≤
∫ b

0

12dx ·
∫ b

0

ρ2(x, y)dx.

Now integrate with respect to y to get
∫ a

0

1dy ≤ b

∫ a

0

∫ b

0

ρ2(x, y)dxdy,

or
a

b
≤

∫∫

R

ρ2dxdy,

which implies Mod(Γ) ≥ b
a
. Thus we must have equality.

Another useful computation is the modulus of the family of path connecting the

inner and out boundaries of the annulus A = {z : r < |z| < R}. An argument similar

to the one above shows that the modulus of this family is 1
2π

log R
r
.

2. Modulus and cross ratio; rectangles revisited

A generalized quadrilateral Q is a Jordan domain in the plane with four specified

boundary points x1, x2, x3, x4 (in counterclockwise order). We define the modulus of

Q,MQ(x1, x2, x3, x4) (or justMQ orM(Q) if the points are clear from context), as the

modulus of the path family in Q which connects the arc (x1, x2) to the arc (x3, x4).

This is also the unique positive real number M such that Q can be conformally

mapped to a 1×M rectangle with the arcs (x1, x2), (x3, x4) mapping to the opposite

sides of length 1. In this paper, we will be particularly concerned with the case when

Q = D and we are given four points in counterclockwise order on the unit circle.

Given a generalized quadrilateral Q with four boundary points x1, x2, x3, x4, the

quadrilateral Q′ with vertices x2, x3, x4, x1 is called the reciprocal of Q and it is easy

to see that Mod(Q′) = 1/Mod(Q). One way to compute the modulus is to define
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the harmonic function on Q which is 0 on (x1, x2) and 1 on (x3, x4) and has normal

derivative zero on the other two arcs. Then

Mod(Q) =

∫∫

Q

|∇u|2dxdy.

(This is clear on a rectangle and it is easy to check that both sides are conformal

invariants.)

If the four points lie on T, then since cr and MD are both invariant under Möbius

transformations of the disk to itself, each must be a function of the other in this case.

The usual way to represent this function (e.g., as in Ahlfors’ book [?]) is to map the

disk to the upper half plane, H, sending the points a, b, c to 0, 1,∞ respectively and

d to −P = cr(a, b, c, d) ∈ (−∞, 0). Then MD(a, b, c, d) is the same as the modulus of

the path family in H connecting (−∞,−P ) to (0, 1). By symmetry, this is twice the

modulus of the path family of closed curves in the plane which separate [−P, 0] from
[1,∞]. We will denote this modulus byM(P ). The transformation z → (z−1)/(z+P )

sends 0, 1,∞,−P to − 1
P
, 0, 1,∞, so by Möbius invariance of modulus and the fact

that conjugate quadrilaterals have reciprocal moduli, we see that

MH(
1

P
) =

1

MH(P )
,(13)

and hence MH(1) = 1 and M(1) = 1/2.

We saw earlier that the the relation is given by

P + 1 = exp(2πM)
1

16

∞∏

n=1

(
1 + exp((1− 2n)2πM)

1 + exp((−2n)2πM)
)8.(14)

For M > 0 the infinite product converges and for M large (say M ≥ 1) we have
∞∏

n=1

(
1 + exp((1− 2n)2πM)

1 + exp((−2n)2πM)
)8 = 1 + 8e−2πM +O(e−4πM).

Thus for P ≥ 1, (equivalently M ≥ 1), we have

log(P + 1) = 2πM − log 16 + 8e−2πM +O(e−4πM),

which implies

P ≃ exp(2πM).

For 0 < P ≤ 1, (equivalently 0 < M ≤ 1), we can use (13) to deduce

log(
1

P
+ 1) =

π

2M
− log 16 + 8e−π/(2M) +O(e−π/M),
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which implies

P ≃ exp(− π

2M
).

In other words,

M ≃ 1

2π
logP, P ≫ 1,

M ≃ π

2| logP | , P ≪ 1,

Thus for x = {x1, x2, x3, x4} ⊂ T, since ModD = 2M ,

MD(x) ≃
1

π
log |cr(x)|, |cr(x)| ≫ 1,

MD(x) ≃
π

| log |cr(x)|| , |cr(x)| ≪ 1,

The conformal modulus of the path family connecting the length 1 sides in a

1× R rectangle is R. By conformal invariance this must also be the modulus of the

unit disk with the four prevertices. If we assume these prevertices are symmetric

with respect to both the real and imaginary axes, then their arguments can be easily

computed from their cross ratio. However, the cross ratio is a function of R as given

by (14), so we can solve the SC parameter problem for rectangles with this function.

Another elegant connection between modulus and cross ratios is given in [?]

(Bagby shows that conformal modulus for a ring domain is given by minimizing

an integral involving logarithms of cross ratios).

3. Pfluger’s theorem and Beurling’s estimate

The usefulness of extremal length is its ability to estimate a conformal invariant

in terms of geometry (length and area). Our main application of this idea is the

following special case of a theorem of Pfluger:

Theorem 51. Suppose K ⊂ D is compact with a smooth boundary and contains

0 in its interior and and E ⊂ ∂D is compact and let F be the family of curves in

D \ K separating 0 from E. Then there is a C (depending only on K) such that

H1(E) ≤ C exp(−πM(F)).

This is not sharp since the right hand side can be positive for sets of zero length.

The sharp version uses logarithmic capacity in place of H1 measure on the left hand

side. See Exercise ?? for the sharp version of Pfluger’s theorem.
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Proof. We assume E has positive length, since there is nothing to prove other-

wise. Furthermore, we may assume E is actually a finite union of closed intervals.

Let µ be Lebesgue measure restricted to E, normalized to have mass 1. Define the

potential function

Uµ(z) = log
1

|z| ∗ µ,

and set

v(z) = Uµ(z) + Uµ(
1

z
).

Then v is symmetric with respect to the unit circle, has negative logarithmic poles

at 0 and ∞ and bounded above by 2| logH1(E)| + O(1) (to prove this note that

since − log |z| is decreasing with |z|, the integral defining U is maximized when E is

an interval and z is its midpoint). Since v is symmetric with respect to T we have

∂v/∂n = 0 on ∂D \ E. Now suppose γ ∈ F and let Ω be the component of D − γ

containing 0. Since v is harmonic in D except for a logarithmic pole at 0 we can

apply Green’s theorem to get
∫

γ

|∇v|ds ≥ −
∫

γ

∂v

∂n
ds = lim

ǫ→0

∫

|z|=ǫ

∂v

∂n
ds = 2π.

Thus |∇v|/2π ∈ A(F), so

M(F) ≤
∫

D\K
(
|∇v|
2π

)2dxdy.

Note that |∇v|2 = 1
2
∆(v2), and use Green’s theorem

∫∫

D\K
|∇v|2dxdy =

1

2

∫∫

D\K
∆(v2)dxdy

= −1

2

∫

∂D

∂v2

∂n
ds− 1

2

∫

∂K

∂v2

∂n
ds

≤ −(max
T

v)

∫

∂D

∂v

∂n
ds+O(1)

Using Green’s theorem gives

−
∫

∂D

∂v

∂n
ds = 2π

Hence,

M(F) ≤ 1

(2π)2
|2 logH1(E)|2π +O(1),

as desired. �
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Corollary 52. Suppose Ω is a Jordan domain, z0 ∈ Ω with dist(z0, ∂Ω) ≥ 1

and E ⊂ ∂Ω. Let F be the family of curves in Ω which separates D(z0, 1/2) from E.

Then ω(z0, E,Ω) ≤ C exp(−πM(F)).

Proof. Since both harmonic measure and modulus are conformally invariant we

need only verify this when Ω = D. But this is the previous theorem. �

If E ⊂ ∂Ω is an arc then the inequality is actually a similarity.

Corollary 53 (Ahlfors distortion theorem). Suppose Ω is a Jordan domain,

z0 ∈ Ω with dist(z0, ∂Ω) ≥ 1 and x ∈ ∂Ω. For each 0 < t < 1 let θ(t) be the length of

Ω ∩ {|w − x| = t}. Then there is an absolute C <∞, so that

ω(z0, D(x, r),Ω) ≤ C exp(−π
∫ 1

r

dt

θ(t)
).

Proof. Let K be the disk of radius 1/2 around z0 and let F be the family of

curves in Ω which separate D(x, r) ∩ ∂Ω from K. Let F1 ⊂ F be the collection of

curves of the form

Lt = Ω ∩ {|w − x| = t}.
if ρ is admissible for F then it is admissible for F1 and hence

1 ≤
∫

Lt

ρds ≤ (

∫

Lt

ρ2ds)θ(t),

so ∫ 1

r

∫

Lt

ρ2dsdt ≥
∫ 1

r

dt

θ(t)
.

This proves

M(F) ≥
∫ 1

r

dt

θ(t)
,

which proves the result by the previous corollary. �

For an alternate version of this using line segments instead of circular arcs, see

Exercise ??.

Corollary 54 (Beurling’s estimate). There is a C < ∞ so that if Ω is simply

connected, z ∈ Ω and d = dist(z, ∂Ω) then for any 0 < r < 1 and any x ∈ ∂Ω,

ω(z,D(x, rd),Ω) ≤ Cr1/2
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Proof. Apply Corollary 53 at x and use θ(t) ≤ 2πt to get

exp(−π
∫ d

rd

dt

θ(t)t
) ≤ C exp(−1

2
log r) ≤ C

√
r.

�

Lemma 55. If Ω is simply connected then

ω(z0, D(x, r),Ω) ≤ C[
r

dist(z, ∂Ω)
]1/2.

Proof. Use extremal length. �

Corollary 56. If Ω is simply connected and w ∈ ∂Ω, then
∫

D(w,r)∩∂Ω
| log 1

|z − w|dωz0(z) ≤ C[
r

dist(z, ∂Ω)
]1/2.

Proof. Cut the disk into concentric annuli an = {z : 2−nr ≤ |z − w| ≤
2−n+1r}. By Beurling estimate the singleton {w} has zero harmonic measure, so∫
D

=
∑∫

An
. However, the integral over An is bounded by n2−n/2 log 1

r
log 2 which

sums to O(| log r/dist(z0, ∂Ω)|). �

4. Logarithmic capacity

Suppose µ is a positive Borel measure on R
2 and define its energy integral by

I(µ) =

∫∫
log

2

|z − w|dµ(z)dµ(w).

We put the “2” in the numerator so that the integrand is non-negative when z, w ∈ T

(in this paper we will only consider the capacity of subsets of T). If E ⊂ R
2 is Borel,

let Prob(E) be the set of positive Borel measures with µ(E) = ‖µ‖ = 1 and define

its logarithmic capacity as

cap(E) =
1

inf{I(µ) : µ ∈ Prob(E)} .

For subsets of the circle, cap is non-negative, monotone and is countably subadditive

(Lemma 4, page 24, [?]; this is where we need the “2” in the definition of the energy

integral). If cap(E) > 0, there is a unique measure which minimizes the energy

integral, which is called the equilibrium measure (it is also equal to the harmonic
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measure of S2 \ E with respect to infinity). An alternate version of logarithmic

capacity is

c̃ap(E) = sup{exp(−I(µ)) : µ ∈ Prob(E)}.
The exponential in the definition is a technical convenience and gives it nice scaling,

i.e., c̃ap(tE) = t · c̃ap(E). The two versions of logarithmic capacity are related by the

equations

c̃ap = exp(−1/cap), cap = (log c̃ap−1)−1.

Note that if E ⊂ T then c̃ap(E) = 0 iff cap(E) = 0. Thus we may speak of sets

of positive or zero capacity without specifying which definition we mean and we will

use both versions throughout the paper.

Logarithmic capacity is closely related to the usual Robin constant γE defined by

γE = inf{I(µ)− log 2 : µ ∈ Prob(E)} =
1

cap(E)
− log 2.

The log 2 enters because we put a “2” in our energy integral, whereas the usual

definition does not.

If f : D → Ω is conformal and E ⊂ ∂Ω then we will call cap(f−1(E)) the capacity

of E with respect to Ω (the value depends on the choice of f , but whether or not it

is zero is independent of f).

The connection between extremal length and logarithmic capacity is given by the

following result, Pfluger’s Theorem, e.g., Theorem 9.17 of [?],

Lemma 57. Suppose E ⊂ T is compact, K ⊂ D is compact and connected and

P is the path family in D connecting K to E. Then c̃ap(E) ≃ exp(−πλ(P)), with

constants that depend only on K.

One particular consequence is the following.

Corollary 58. If f is a conformal map on D and takes the boundary value 0 at

every point of E ⊂ T, then cap(E) = 0

Proof. SupposeK ⊂ D is compact and choose r so small thatD(0, r)∩f(K) = ∅.
Then the extremal length of the path family connecting K to E in D is greater than

for the family crossing the annulus {z : ǫ < |z| < r} in Ω. Taking ǫ → 0 and using

the estimate for annuli discussed above proves the result. �
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Using Lemma 62, which we will prove later, one can show that it suffices to assume

f has radial limit 0 on E in Lemma 58.

Suppose ∂Ω is bounded in R
2 and f : D → Ω is conformal. For 0 < r < 1, let

af (r) = area(Ω \ f(D(0, r))).

Since ∂Ω is compact it is easy to see that this tends to zero as r → 1.

Lemma 59. There is a C < ∞ so that the following holds. Suppose f : D → Ω

and 1
2
≤ r < 1. Let E = {x ∈ T : |f(sx) − f(rx)| ≥ δ for some r < s < 1}. Then

the extremal length of the path family P connecting D(0, r) to E is bounded below by

δ2/Ca(r).

Proof. Suppose z, w ∈ Ω, suppose γ is the hyperbolic geodesic connecting z and

w and suppose γ̃ is any path in Ω connecting these points. By the Gehring-Hayman

inequality [?], there is a universal C <∞ such that ℓ(γ) ≤ Cℓ(γ̃) (here ℓ(γ) denotes

the length of γ). In other words, up to a constant, the hyperbolic geodesic has the

shortest Euclidean length amongst all curves in Ω connecting the two points.

Now suppose we apply this with z = f(sx) and w ∈ f(D(0, r)). Then the length

of any curve from w to z is at least 1/C times the length of the hyperbolic geodesic

γ between them. But this geodesic has a segment γ0 that lies within a uniformly

bounded distance of the geodesic γ1 from f(rx) to z. By the Koebe distortion theorem

γ0 and γ1 have comparable Euclidean lengths, and clearly the length of γ1 is at least

δ. Thus the length of any path from f(D(0, r)) to f(sx) is at least δ/C. Now let

ρ = C/δ in Ω \ f(D(0, r)) and 0 elsewhere. Then ρ is admissible for f(P) and∫∫
ρ2dxdy is bounded by C2a(r)/δ2. Thus λ(P) ≥ δ2

C2a(r)
. �

If f has radial limits on E ⊂ T then the previous lemma is still valid for s = 1.

For subsets of the circle it is known that

c̃ap(E) ≥ |E|/C,(15)

(e.g., XI.2.E in [?]). Combining this with Lemmas and 57 and 59 gives

Corollary 60. If f : D → Ω is a conformal map onto a bounded domain then

for any δ > 0,

|{x ∈ T : |f(x)− f(rx)| ≥ δ}| → 0,
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as r → 1. Thus a conformal map of D with bounded image has radial limits Lebesgue

almost everywhere.

Lemma 61. Suppose f : D → Ω is conformal and for R ≥ 1,

E = {x ∈ T : |f(x)| ≥ R dist(f(0), ∂Ω)}.
Then cap(E) ≤ CR−1/2 (with C independent of Ω).

Proof. Assume f(0) = 0 and dist(0, ∂Ω) = 1 and let ρ(z) = |z|−1/ logR for

z ∈ Ω ∩ {1 < |z| < R}. Then ρ is admissible for the path family connecting

D(0, 1/2) to ∂Ω \ D(0, R) and
∫∫

ρ2dxdy ≤ 2π/ logR. By the Koebe distortion

theorem f−1(D(0, 1/2)) is contained in a compact subset of D, independent of Ω.

The result follows by Lemma 57. �

Lemma 61 also follows from a stronger result of Balogh and Bonk in [?].

Given a compact set E ⊂ T we will now define the associated “sawtooth” region

WE and a 2-quasiconformal map between WE and D which keeps E fixed pointwise.

Suppose {In} are the connected components of T \E and for each n let γn(θ) be the

circular arc in D with the same endpoints as In and which makes angle θ with In (so

γn(0) = In and γn(π/2) is the hyperbolic geodesic with the same endpoints as In).

Let Cn(θ) be the region bounded by In and γn(θ), and let WE(θ) = D \ ∪nCn(θ).

Figure 1. The sawtooth domain WE

For the rest of the paper we will let WE = WE(π/8) (and let W ∗
E ⊂ D

∗ be its

reflection across T). We can map D to WE by a 2-quasiconformal map f as follows.

First let f be the identity on WE(π/2). Then map Un = Cn(π/2)\Cn(π/4) (which is
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a crescent of angle π/4) to Vn = Cn(π/2)\Cn(3π/8) (which is a crescent of angle π/8)

as follows: map Un to the cone {z : 0 < arg(z) < π/4} by a Möbius transformation,

then to {z : 0 < arg(z) < π/8} by halving the angle and then to Vn by another

Möbius transformation. Finally, map Cn(π/4) to Cn(3π/8) \ Cn(π/8) by a Möbius

transformation. See Figure 2. It is easy to check these maps can be chosen to match

up along the common boundaries and hence define a 2-quasiconformal map.

Figure 2. Mapping the disk to WE

If f : D → Ω and 0 < r < 1, then define

df (r) = sup{|f(z)− f(w)| : |z| = |w| = r and |z − w| ≤ 1− r}.

If ∂Ω is bounded in the plane, then it is easy to see this goes to zero as r ր 1, since

otherwise any neighborhood of ∂Ω would contain infinitely many disjoint disks of a

fixed, positive size.

Lemma 62. Suppose f : D → Ω ⊂ S2 is conformal. Then for any ǫ > 0 there is

a compact set E ⊂ T with cap(T \ E) < ǫ such that f is continuous on WE.

Proof. By applying a square root and a Möbius transformation, we may assume

that ∂Ω is bounded in the plane. Given r < 1 let

E(ǫ, r) = {x ∈ T : |f(sx)− f(tx)| > ǫ for some r < s < t < 1}

and note that by Lemmas 57 and 59

c̃ap(E(ǫ, r)) ≤ exp(−πǫ2/Ca(r)).

Moreover, this set is open since f is continuous at the points sx and tx. So if we take

ǫn = 2−n, and use the relationship between cap and c̃ap we can choose rn so close

to 1 that cap(En) ≡ cap(E(ǫn, rn)) ≤ ǫ2−n. If we define E = T \ ∪n>1En, then E is

closed and T \ E has capacity ≤ ǫ by subadditivity .

To show f is continuous at every x ∈ WE, we want to show that |x − y| small

implies |f(x) − f(y)| is small. We only have to consider points x ∈ ∂WE ∩ T. First
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suppose y ∈ ∂WE ∩ T. Choose the maximal n so that s = |x − y| ≤ 1 − rn. Then

x, y /∈ En, so

|f(x)− f(y)| ≤ |f(x)− f(sx)|+ |f(sx)− f(sy)|+ |f(sy)− f(y)|.
The first and last terms on the right are ≤ ǫn−1 by the definition of E. The middle

term is at most df (1− s) (which tends to 0 as s→ 0). Thus |f(x)− f(y)| is small if

|x− y| is.
Now suppose x ∈ ∂WE ∩T, y ∈ ∂WE \T. From the definition of WE it is easy to

see there is a point w ∈ ∂WE ∩ T such that |w − y| ≤ 2(1− |y|) ≤ 2|x− y|. For the
point w we know by the argument above that |f(x) − f(w)| is small. On the other

hand, if t = 1− |y|, then
|f(y)− f(w)| ≤ |f(y)− f(tw)|+ |f(tw)− f(w)|.

The first term is bounded by Cdf (1− t) and the second is small since w 6∈ En. Thus

|f(x)− f(y)| is small depending only on |x− y|. Hence f is continuous on WE. �
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Figure 3. On top is a non-locally connected boundary. There is one
ray on which the conformal map does not have a limit. The domain on
the lower left has a continuous extension everywhere on the boundary,
but has a radial image of infinite length. More precisely, suppose the
base of the triangle is [0, 1] and the spikes occur at points {xn} and have
length 3

4
(1 − xn). Then if

∑
n(1 − xn) = ∞, the hyperbolic geodesic

that ends at the lower right corner has infinite length. The figure on
the right also represents a locally connected boundary, but it has a
boundary point whose preimage is an uncountable Cantor set on the
circle. by Theorem ??, this gives an example of a Cantor set with
capacity zero (one can also be constructed directly).
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5. Symmetry and Modulus

If γ is a path in the plane let γ̄ be its refection across the real line and let

γ+ = (γ ∩ H) ∪ γ ∩ L, where H,L denote the upper and lower halfplanes. If Γ is a

path family in the plane then Γ = {γ̄ : γ ∈ Γ} and Γ+ = {γ+ : γ ∈ Γ}.

γ
γ+

Figure 4. The curves γ and γ+

Lemma 63. If Γ = Γ then M(Γ) = 2M(Γ+).

Proof. We start by proving M(Γ) ≤ 2M(Γ+). Given a metric ρ, define σ(z) =

max(ρ(z), ρ(z̄)). Then for any γ ∈ Γ,

∫
+γ+σds ≥

∫

γ+
ρds ≥ inf

γ∈Γ

∫

γ

ρds.

Thus if ρ admissible for Γ+, then σ is admissible for Γ Thus, since max(a, b)2 ≤ a2+b2,

M(Γ) ≤
∫
σ2dxdy ≤

∫
ρ2(z)dxdy +

∫
ρ2(z̄)dxdy ≤ 2

∫
ρ2(z)dxdy.

Taking the infimum over admissible ρ’s for Γ+ makes the right hand side equal to

2M(Γ+), proving the claim.
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For the other direction, given ρ define σ(z) = ρ(z) + ρ(z̄) for z ∈ H and σ = 0 if

z ∈ lhp. Then
∫

γ+
σds =

∫

γ+
ρ(z) + ρ(z̄)ds

=

∫

γ∩H
ρ(z)ds+

∫

γ∩H
ρ(z̄)ds+

∫

γ∩L
ρ(z) +

∫

γ∩L
ρ(z̄)ds

=

∫

γ

ρ(z)ds+

∫

γ̄

ρ(z)ds

≥ 2 inf
r
ho

∫

γ

ρds.

Thus if ρ is admissible for Γ, 1
2
σ is admissible for Γ+. Hence, since (a+b)2 ≤ 2(a2+b2),

M(Γ+) ≤
∫
(
1

2
σ)2dxdy

=
1

4

∫

H

(ρ(z) + ρ(z̄))2dxdy

≤ 1
2

∫

H

ρ2(z)dxdy +

∫

H

ρ2(z̄)dxdy

=
1

2

∫
ρ2dxdy.

Taking the infimum over all admissible ρ’s for Γ gives 1
2
M(Γ) on the right hand side,

proving the lemma. �

Lemma 64. Let D∗ = {z : |z| > 1} and Ω0 = D
∗ \ [R,∞) for some R > 1. Let

Ω = D
∗ \K, where K is a closed, unbounded, connected set in D

∗ which contains the

point {R}. Let Γ0,Γ denote the path families in these domains with separate the two

boundary components. Then M(Γ0) ≤M(Γ).

Proof. We use the symmetry principle we just proved. The family Γ0 is clearly

summytric (i.e., Γ = Γ, so M(Γ+) = 1
2
M(Γ0). The family Γ may not be symmetric,

but we can replace it by a larger family that is. Let ΓR be the collection of rectifiable

curves in D
∗\{R} which have zero winding number around {R}, but non-zero winding

number around 0. Clearly Γ ⊂ ΓR and ΓR is symmetric so M(Γ) ≥ M(ΓR) =

2M(Γ+
R). Thus all we have to do is show M(Γ+

R) = M(Γ+
0 ). We will actually show

Γ+
R = Γ+

0 . Since Γ0 ⊂ ΓR is obvious, we need only show Γ+
R ⊂ Γ+

0 .
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Figure 5. The annulus on top has smaller modulus than any other
annulus formed by connecting R to ∞.

Suppose γ ∈ ΓR. Since γ has non-zero winding around 0 it must cross both the

negative and positive real axes. If it never crossed (0, R) then the winding around 0

and R would be the same, which false, so γ must cross (0, R) as well. Choose points

z− ∈ γ ∩ (−∞, 0) and z+ ∈ γ ∩ (0, R). These points divide γ into two subarcs γ1

and γ2. Then γ+ = γ+1 ∪ γ+2 . But if we reflect γ+2 into the lower half-plane and join

it to γ+1 it forms a closed curve γ0 that is in Γ0 and γ+0 = γ+. Thus γ+ ∈ Γ+
0 , as

desired. �

Let Ωǫ,R = {z : |z| > ǫ} \ [R,∞). Thus Ω1,R is the domain considered in the

previous lemma. We can estimate the moduli of these domains using the Koebe map

k(z) =
z

(1 + z)2
= z − 2z2 + 3z3 − 4z4 + 5z5 − . . . ,

which conformal maps the unit disk to R
2 \ [1

4
,∞) and satisfies k(0) = 0, k′(0) = 1.

Then k−1( 1
4R
z) maps Ωǫ,R conformally to an annular domain in the disk whose outer

boundary is the unit circle and whose inner boundary is trapped between the circle

of radius ǫ
4R
(1±O( ǫ

R
). Thus the modulus of Ωǫ,R is 2π log 4R

ǫ
+O( ǫ

R
).

Lemma 65. Suppose z, w ∈ D and K is a compact connected set in D which

contains both these points. Let Γ be the path family that separates K and T. Then

the modulus of this family is maximized when K is the hyperbolic geodesic between z

and w in which case the modulus is 2π log 4
ρ
(z, w) + O(ρ(z, w)), where ρ denotes the

hyperbolic distance.
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Proof. By conformal invarience we may use a Möbius transformation to move z

to 0 and w onto the positive axis. Applying an inversion, the path family is mapped

to one as in Lemma 64, showing that the radial line from z to w maximizes the

modulus. The estimate of the modulus follows from our previous remarks. �

Theorem 66 (The Koebe 1
4
Theorem). Suppose f is holomorphic, 1-1 on D and

f(0) = 0, f ′(0) = 1. Then D(0, 1
4
) ⊂ f(D).

Proof. This proof is from [?]. Recall that the modulus of a doubly connected

domain is the modulus of the path family that separates the two boundary com-

ponents (and is equal to the extremal distance between the boundary components).

Let R = dist(0, ∂f(D)). Let Aǫ,r = {z : ǫ < |z| < r} and note that by conformal

invarience

2π log
1

ǫ
=M(Aǫ,1) =M(f(Aǫ,1).

Let δ = min|z|=ǫ |f(z)|. Since f ′(0) = 1, δ = ǫ+O(ǫ2). Note that f(D)\D(0, delta) ⊃
f(Aǫ,1), so

M(f(D) \D(0, ǫ2)) ≥M(f(Aǫ,1)).

By Lemma 64

M(f(D) \D(0, ǫ2)) ≤M(Ωǫ2,R) = 2π log
4R

ǫ 2
+O(

ǫ2
R
).

Putting these together gives

2π log
4R

δ
+O(

δ

R
) ≥ 2π log

1

ǫ
.,

or

log 4R− log(ǫ+O(ǫ2)) +O(
ǫ

R
) ≥ − log ǫ.

Taking ǫ→ 0 shows log 4R ≥ 0, or R ≥ 1
4
. �

Corollary 67. If f is univalent on D, then

1

4
|f ′(z)|(1− |z|2) ≤ dist(f(z), ∂Ω) ≤ |f ′(z)|(1− |z|2).

Proof. By precomposing with a Möbius transformation and postcomposing by

a linear map, we may assume z = 0, f(0) = 0 and f ′(0) = 1. Then the right hand

inequality is just Schwarz’s lemma applied to f−1. The right side is the previous

result. �
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Because of Koebe’s theorem we have

dρΩ ≤ dρ̃Ω ≤ 4dρΩ.(16)

Figure 6. Its easy to compute the quasihyperbolic length of this
curve (which is 3 + 3

2
π), and a little more involved to show it is a

quasi-hyperbolic geodesic, but together these facts give an estimate of
its hyperbolic length.

Corollary 68. Suppose Ω is simply connected, z, w ∈ Ω. Then

ρ(z, w) ≥ | log dist(z, ∂Ω)

dist(w, ∂Ω)
|.

Proof. Suppose γ is a curve in Ω connecting the two points. Then the quasi-

hyperbolic length of γ is at least

|
∫ dist(w,∂Ω

dist(z,∂Ω)

dt

t
| = | log dist(z, ∂Ω

dist(w, ∂Ω)
|.

By our previous remarks, the hyperbolic distance is at least 1
4
of this. �

6. The distortion theorems

In this section we give the “usual” proof of Koebe’s 1
4
theorem, via the area

theorem and deduce the sharp version of the distortion estimates.

Recall Green’s theorem,
∫∫

Ω

u∆v + v∆udxdy =

∫

∂Ω

u
∂v

∂n
+ v

∂u

∂n
ds,(17)

where n denotes the inward pointing normal vector of ∂Ω.

COMPLEXV ERSION
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We will also use Green’s theorem in the following form:∫

∂Ω

f(x, y)dx+ g(x, y)dy =

∫∫

Ω

∂g

∂x
− ∂f

∂g
dxdy(18)

and its simple consequence that the area of a region Ω is given by

area(Ω) =
1

2

∫

∂Ω

xdy − ydx =
1

2i

∫
∂Ωzdz.(19)

We now come to some well known (but perhaps not as well known as the results

above) estimates for univalent mappings. The basic idea is to show that a univalent

map f on D is well approximated by its linear Taylor approximation f(z0)+f
′(z0)(z−

z0) in a hyperbolic neighborhood of z0, with estimates that do not depend on f or

z. These so called “distortion estimates” are fundamental to most arguments in

geometric function theory. The first step is to prove:

Theorem 69 (Area theorem). Suppose g(z) = 1
z
+ b0 + b1z + . . . is univalent in

D. Then
∑∞

n=0 n|bn|2 ≤ 1. In particular, |b1| ≤ 1.

Proof. For 0 < r < 1 let Dr = C \ g(D(0, r)). If z = g(w) and w = eiθ then

dw = iwdθ, so by (58),

area(Dr) =

∫∫

Dr

dxdy =
1

2i

∫

∂Dr

z̄dz =
−1

2i

∫

∂D(0,r)

ḡ(w)g′(w)dw.

To evaluate the right hand side note that

g(z) =
1

z
+ b0 + b1z + . . . ,

g′(z) = 1
1

z2
+ 0 + b1 + 2b2z + . . . ,

so that∫

|w|=r
ḡ(w)g′(w)dw = i

∫
ḡ(w)g′(w)wdθ

= i

∫
(
1

w̄
+ b̄0 + b̄1w̄ + . . . )(− 1

w
+ b1w + 2b2w + . . . )dθ

= 2πi(− 1

r2
+ |b1|2r2 + 2|b2|r4 + . . . 0

Thus,

0 ≤ area(Dr) = π(
1

r2
−

∞∑

n=1

n|bn|2r2n).

Taking r → 1 gives the result. �
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Corollary 70. If f(z) = z +
∑∞

n=2 anz
n is univalent on the unit disk, then

|a2| ≤ 2.

Proof. Let g(z) = (f(z2))−1/2 = 1/z − a2z/2 + . . . . We claim g is one-to-one.

To see this suppose g(z) = g(w). Then f(z2) = f(w2), so z = ±w. Note that g is

odd, so z = w. Since b1 = a2/2, the previous result implies |a2| ≤ 2. �

Theorem 71 (Koebe 1/4 theorem). If f is univalent on D, then

1

4
|f ′(z)|(1− |z|2) ≤ dist(f(z), ∂Ω) ≤ |f ′(z)|(1− |z|2).

Proof. By precomposing with a Möbius transformation and postcomposing by

a linear map, we may assume z = 0, f(0) = 0 and f ′(0) = 1. Then the right hand

inequality is just Schwarz’s lemma applied to f−1. To prove the left hand inequality,

suppose f never equals w in D. Then

g(z) =
wf(z)

w − f(z)
= z + (a2 +

1

w
)z2 + . . . ,

is univalent with f(0) = 0 and f ′(0) = 1. Applying Corollary 128 to both f and g

gives
1

|w| ≤ |a2|+ |a2 +
1

w
| ≤ 2 + 2 = 4.

Thus the omitted point w lies outside D(0, 1/4), as desired. �

Because of Koebe’s theorem we have

dρΩ ≤ dρ̃Ω ≤ 4dρΩ.(20)

Here ρ̃ is the quasi-hyperboic metric on Ω, given by |dz|/dist(z, ∂Ω).

Lemma 72. Suppose f is univalent on D, f(0) = 0 and f ′(0) = 1. Then

1− |z|
(1 + |z|)3 ≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3 ,

Proof. Fix a point w ∈ D and write the Koebe transform of f ,

F (z) =
f(τ(z))− f(w)

(1− |w|2)f ′(w)
,

where

τ(z) =
z + w

1− w̄z
.
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Figure 7. Its easy to compute the quasihyperbolic length of this
curve (which is 3 + 3

2
π), and a little more involved to show it is a

quasi-hyperbolic geodesic, but together these facts give an estimate of
its hyperbolic length.

This is univalent, so by Corollary 128, |a2(w)| ≤ 2. Differentiation and setting z = 0

shows

F ′(z) =
f ′(τ(z))τ ′(z)

(1− |w|2)f ′(w)
,

F ′′(z) =
f ′′(τ(z))τ ′(z)2 + f ′(τ(z))τ ′′(z)

(1− |w|2)f ′(w)
,

τ ′(0) = 1− |w|2, τ ′′(0) = −2(1− |w|2),

F ′′(0) =
f ′′(w)

f(w)
(1− |w|2)− 2w̄.

This implies that the coefficient of z2 (as a function of w) in the power series of F is

a2(w) =
1

2
((1− |w|2)f

′′(w)

f ′(w)
− 2w̄).

Using |a2| ≤ 2 and multiplying by w/(1− |w|2), we get

|wf
′′(w)

f ′(w)
− 2|w|2

1− |w|2 | ≤
4|w|

1− |w|2 .

Thus
2|w|2 − 4|w|
1− |w|2 ≤ wf ′′(w)

f ′(w)
≤ 4|w|+ 2|w|2

1− |w|2 .

Now divide by |w| and use partial fractions,

−1

1− |w| +
−3

1 + |w| ≤
1

|w|
wf ′′(w)

f ′(w)
≤ 3

1− |w| +
1

1 + |w|
Note that



7. THE VORONOI DIAGRAM 159

∂

∂r
log |f ′(reiθ)| =

∂

∂r
Re log f ′(z)

= Re
z

|z|
∂

∂z
log f ′(z)

=
1

|z|Re(
zf ′′(z)

f ′(z)
)

Since w = reiθ and f ′(0) = 1, we can integrate to get

log(1− r)− 3 log(1 + r) ≤ log |f ′(reiθ)| ≤ −3 log(1− r) + log(1 + r).

Exponentiating gives the result. �

7. The Voronoi diagram

Given a collection of sets S = {Sk} ⊂ C, called “sites”, we let

Ωk = {z ∈ C : dist(z, Sk) < dist(z, Sj) for all j 6= k},

i.e., Ωk is the collection of points which are strictly closer to Sk than to any other

site. For example, if ∫ is a finite set of distinct points, then each the {Omegak} are

disjoint polygonal regions (possibly unbounded) whose closures fill the entire plane.

We are more interested in the case when the sides are the sides of a polygon and

we only consider the part of Ω that lies inside the polygon (which we will also call

Ωk). In this case, the regions Ωk do not “fill in” the whole interior. At each concave

vertex (i.e., interior angle > π there is a non-trivial polygonal region which are equal

distant from the vertex and its two adjacent edges; thus these points are not in Ωk for

either of these edges. Such points form the set Ωv, which we think of as the Voronoi

cell associated to the vertex v. With this proviso, the Voronoi decomposition of a

polygon is a division of the interior on the polygon into polygonal pieces, one for each

edge and concave vertex. The boundaries of these cells for a finite graph with edges

that terminate at each vertex of the polygon (one at each convex vertex and two at

each concave vertex). See Figure 5.

Inside each Voronoi cell, the quasi-hyperbolic metric is easy to describe. For

edge-cells, it is simply the hyperbolic metric of for the half-plane containing the cell

and whose boundary line contains the corresponding edge of the polygon. For vertex
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cells, it the quasi-hyperbolic metric is given by
∫
γ

|dz|
|z−v| where vis the vertex. This cell

has two sides which meet at v. Using the logarithmic map, we can conformally map

the cell to a subset of a horizontal strip so that v maps to −∞. Since (log z)′ = 1
z
,

the quasi-hyperbolic metric in the cell is mapped isometrically the Euclidean metric

in the strip.

Thus the Voronoi cells break Ω up into a finite number of pieces where it has

a simply formula. On edge piece the metric is hyperbolic; on vertex pieces it is a

Euclidean metric (after the log mappings).

Recall that in Davis’ method we tried to iteratively improve a guessed set of

z-parameters by computing the corresponding image polygon and increasing or de-

creasing the distance between adjacent parameters based on whether the Euclidean

length of the corresponding edge (as a fraction of the total length of the polygon) was

more or less than in the target polygon. The problem with this method was that we

could not justify the apparent convergence in many cases because Euclidean length

and harmonic measure of a boundary arc and not always monotonely related.

The quasi-hyperbolic metric allows us to compute another measure of a boundary

arc that might be more directly related to the arcs harmonic measure. Choose a

point z0 on the boundary of some Voronoi cell. Each edge I of the polygon has its

corresponding cell. The boundary of this cell either contains z0 or contains a point

zI which can be connected to z0 by a shortest path along the cell boundaries. In the

first case we let ℓI be the interior angle of the cell ΩI at z0. In the second case we let

ℓI be the product of the interior angle of ΩI at zI and exp(−ρ̃(z0, zI)).
This suggests a quasi-hyperbolic version of Davis’s method:

(1) Given a set of z-parameter guesses, compute the image polygon.

(2) compute the Voronoi diagram and compute the numbers ℓI for the image.

Normalize them to have total measure 2π.

(3) Compare with the corresponding list of numbers ℓ̂I for the target polygon.

Change the spacing between adjacent parameters by multiplying by ℓI/ℓI .

Renormalize so the spacings so they sum to 2π.

(4) Repeat until the desired accuracy is attained.
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I have not written code to implement this, but expect that it would work as well

as Davis’s method and possibly better, but is more costly to compute. Is it worth

the extra work?

FIGURE of

8. Convergence of Kakutani’s method

Now that we have Koebe’s 1
4
theorem, we can return to some unfinshed business

from Chapter 5. We introduced a random process which starts at a point z0 ∈ Ω and

selects a new point on the circle, uniformly and randomly on the circle centered at

z0 of radius λdist(z0, ∂Ω). Repeating this process gives a random sequence of points

{zn} which we had claimed converges exponentially to the booundary almost surely.

We can now prove this.

Lemma 73. Assume Ω is simply connected. With notation as above, the sequence

{zn} converges to a point z ∈ ∂Ω almost surely. Let dn = dist(zn, ∂Ω). Then there

are constants 0 < a, b < 1 (independent of Ω and z0) so that

Prob(dn ≥ and0) ≤ bn.

In particular, after O(log 1
ǫ
) steps of the random walk, there is only an exponen-

tially small chance that the walk is farther than ǫ from its limiting point on ∂Ω. The

strong law of large numbers can be applied to show that almost surely, dn = O(an)

for large enough n.

Proof. There is no loss in generality to assume d0, so we do this. Let f : D → Ω

be a Riemann mapping sending 0 to z0 and define

v(z) = log(|f ′(z)|−1) + ρD(0, z) = − log |f(z)|+ log ρD(0, z).

since log ρ(0, z) ≃ 1 − |z| for |z| > 1/2, v has a negative logarithmic pole at 0 and

satisifies

v(z) ≃ log
1

dist(f(z), ∂Ω)
,

near the boundary.

We claim that v is subharmonic is a uniform way.
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Lemma 74. If z ∈ D and W ⊂ D is a subdomain which contains an ǫ-hypeerbolic

ball around z, then ∫

∂W

v(w)dω(z, ·,W ) ≥ v(z) + c,

for some c > 0 that depends on ǫ but not on z.

Assume this for the momment and we will finish the proof of the Lemma 73 .

Suppose zn is known. We choose zn+1 from a Euclidean circle of radius λdn around

zn. By Corollary 67 this circle contains a hyperbolic ball of radius ǫ > 0 around

zn where ǫ is fixed depending only on λ. The conformal preimate of this disk is

a smooth domain in the disk containing wk = f−1(zk) to which Lemma 5 applies.

Thus expected value of V over all choices of zn+1 is an additive constant larger than

the expected value over zn. Thus E(V, n) ≥ cn. After the n steps, the Kakutani

process can be no closer than (1− λ)n to the boundary, so the expected value of v is

≤ Cn. �



CHAPTER 5

Quasiconformal Mappings

In this chapter we consider quasiconformal maps in more detail. In particular,

we will introduce several classes of self-maps of the disk (biLipschitz, quasiconformal,

quasi-isometric and quasisymmteric) and discuss the containments between these

classes.

1. Compactness of K-quasiconformal maps

We want to show that the collection of K quasiconformal maps D → D which

fix the origin is compact. This has two steps. First we have to show this collection

is equicontinuous so that we can apply the Arcela-Ascoli theorem. This will follow

from the symmetry principle of the previous section. Next, we have to show that a

uniform limit of K-quasiconformal maps is K-quasiconformal. Since we are using the

geometric definition of quasiconformality, this reduces to showing that if a sequence

of generalized qudrilaterals Qn converges to a quadrilateral Q, then the moduli of Qn

converge to the modulus of Q. We start with the equicontinuity.

Lemma 75. Suppose f : D → D is K-quasiconformal. Then

1

C
ρ(z, w)K , ρ(z, w) ≤ ρ(f(z), f(w)) ≤ Cmin(ρ(z, w)1/K , ρ(z, w)).

Proof. For the upper bound on small scales use modulus. On large scales con-

nect by unit chain. For lower bound, use upper bound on inverse function. �

Recall that a generalized quadrilateral is a Jordan domain with four ordered,

distinct points on the boundary. We say that two such domains are ǫ close if each of

their boundaries lie in an ǫ neighborhood of the other and corresponding vertices lie

within ǫ of each other

163
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Lemma 76. Suppse R is a 1× r rectangle and Ω ⊂ R is ǫ close to R with ǫ < 1
4
r.

Then

1−O(ǫ) ≤ M(R)

M(Ω)
≤ 1 +O(ǫ).

Proof. Consider the metric 1
r−2ǫ

. This is clearly admissible for the path family

connecting the “vertical” sides of Ω and
∫
ρ2dxdy ≤ r

(r−2ǫ)2
≤ 1

r
(1+O( ǫ

r
)). The same

esimate for the conjugate family proves the oppsite inequality. �

Lemma 77. Suppose Ω is a generalized quadrilateral. For any ǫ > 0 there is a

another quadrilateral Q′ containing Q and a conformal mapping f of Q′ to a rectangle

R, so that f(Ω) is ǫ close to R.

Proof. Choose a basepoint in Ω and a domain Ω′ so that the quasi-hyperbolic

distance from the base point to ∂Ω in Ω′ is large. Then the distnace in R will also

be large which implies the boundary of f(Ω) is close to ∂R. �

Lemma 78. Suppose Ω is a generalized quadrilateral and {Qn} are quadrilaterals

so that for any ǫ > 0, eventually all the Q′
ns are ǫ-close to Ω. Then M(Qn) →M(Q).

Proof. Fix ǫ > 0 and choose Ω′ containing Ω and a conformal map f of Ω′ to

a rectangle so that f(Ω) is ǫ close to R. Then for n large enough f(Ωn) is ǫ close to

f(Ω) and hence 2ǫ close to R. Thus bothM(Ω) =M(f(Ω)) andM(Ωn) =M(f(Ωn))

are within a factor of 1 +O(ǫ) of M(Ω) and hence are this close to each other. since

this holds for any ǫ, we have the desired convergence. �

Lemma 79. If {fn} are K-quasiconformal maps that converge uniformly on com-

pact sets to a homeomorphism f , then f is K-quasiconformal.

Proof. For any generalized quadrilateral Q, fn(Q) is eventually ǫ close to f(Q),

whichis a generalized quadrialateral since f is a homeomorphism. The by the previous

LemmaM(f(Q)) = limnM(fn(Q)) ≤ KM(Q). Since this holds for all quadrilaterals,

f is K-quasiconformal �

Lemma 80. If {fn} are K-quasiconformal maps of D to itself and fn → f uni-

formly on compact subsets of D, then f is K-quasiconformal.
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Proof. By Lemma ??, this collection of functions is equicontinuous and bounded,

so by the Arcela-Ascoli theorem, any sequence contains a subsequence which con-

verges uniformly on compact sets to a function f . Since the K-quasiconformal maps

are bi-Hölder this map must be 1-1, hence a homeomorphism. By Lemma 79 it is

K-quasiconformal. �

Lemma 81. If {Ωn} is an exhaustion of Ω and for each n there is aK-quasiconformal

map ϕn : Ωn → D, which maps some fixed point z0 to 0, then we can extract a sub-

sequence that converges to a K-quasiconformal map ϕ : Ω → D.

Lemma 82. Suppose Ω is a Jordan domain and for each z ∈ Ω let Iz be an arc

of ∂Ω with

diam(Iz) ≃ dist(z, Iz) ≃ dist(z, ∂Ω).

Suppose ϕ : Ω → D is a quasiconformal map. Then there is another quasiconformal

map ψ : Ω → disk with the same boundary values so that

|ψ′(z)| ≤ Cdiam(ψ(Iz))/diam(Iz)).

2. Quasi-isometries

Defn QI

A map is quasi-isometry if image and inverse image of any 1-ball is contained in

a C-ball.

Lemma 83. A K-quasiconformal map D → D is a quasi-isometry of the hyperbolic

metric

Proof. �

Lemma 84. Image of a geodesic ray [0, eiθ] stays in C-neigborhood of geodesic

from f(0) to f(eiθ).

Lemma 85. Image of infinite geodesic stays inside C-neighborhood of geodesic

with same endpoints.

Corollary 86. Boundary values are bi-Hö;der.
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3. Quasisymmetric maps

DEFN

Lemma 87. Quasi-isometry extends to quasisymmetric mapping of circle.

Lemma 88. Quasiconformal maps are quasisymmetric.

Lemma 89. The image of a circle Γ ⊂ D under a quasiconformal map satisfies

the bounded turning condition.

4. BiLipschitz maps

DEFN on metric space

Lemma 90. If f : X → Y is K-biLipschitz and γ ⊂ X is a curve, then

ℓ(γ)/K ≤ ℓ(f(γ)) ≤ Kℓ(γ).

If E ⊂ X then the 2-dimensional Hausdorff measure satisfies

ℓ(γ)/2 ≤ ℓ(f(γ)) ≤ K2ℓ(γ).

Proof. These are almost immediate from definitions. The length of a curve

gamma is

ℓ(γ) = sup
∑

k

(.xk, xk+1),

where the supremum is over all partitions of γ, i.e., xk = σ(tk) where 0 ≤ t1 < t2 <

. . . tn ≤ 1 and σ : [0, 1] → γ is a parametrization. If f is biLipschitz on γ, then f ◦ σ
is a parametrization of f(γ) and

ℓ(f(γ)) = sup
∑

k

(.f(xk), f(xk+1)) ≤ K sup
∑

k

(.xk, xk+1) = Lℓ(γ).

Since f is a homeomorphism we can prove the reverse inequality by considering f−1.

The 2-dimensional Hausdorff measure is defined as

H2(E) = lim
δ→0

inf{
∑

k

r2k : E ⊂ ∪kB(xk, rk), rk < δ},

where the infimum is taken over all covers of E by ball of radius less than δ. If

E ⊂ ∪kB(xk, rk), then f(E) ⊂ ∪kB(f(xk), Krk), from which we get H2(f(E)) ≤
K2H2(E). The opposite inequality is again proved by considering the inverse. �
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When X = R
2, the 2-dimensional Hausdorff measure is simply a multiple of the

usual area measure. Thus K-biLipschitz maps of planar domains multiply area by at

most K2.

Lemma 91. A quasi-symmetric boundary map has a hyperbolic bi-Lipschitz ex-

tension to interior.

Proof. Tesselate disk by right pentagons. Each pentagon determined by ten

points where bounding geodesics hit circle. For each geodesic, map endpoints forward

under mapping and form new geodesic. All such cut disk into pentagons which are

bounded distortion of originals. Map each pentagon forward. Gives bi-Lipschitz map.

FIGURE OF PENTAGON BEFORE AND AFTER

�

Figure 1. The hyperbolic disk can be tesselated by various right polygons

Lemma 92. A K-biLipschitz map f : D → D between the hypebolic metrics is

K2-quasiconformal

Proof. What we will really uses is the following: if z ∈ D and r > 0 is small

enough (depending on z), then

|z − x| < δ, |z − y| < δ ⇒ 1

K2(1 +O(δ))

|z − x|
|z − y|

|f(z)− f(y)|
|f(z)− f(x)| ≤ K2(1 +O(δ)).

In a small hyperbolic ball the ratio on the right is the same wheter measured with

Euclidean distances or hyperbolic distances, at least up to factor of 1 + O(δ) which

can be absored into the constants. Moreove, if we compose f with a conformal map,

the bounds change by at most 1 +O(δ), by the distortion theorem.



168 5. QUASICONFORMAL MAPPINGS

Figure 2. A quasisymmetric map can’t distort cross ratio by too
much and the angle that two geodesics cross at is determined by the
cross ratio of the four endpoints on the circle. Thus a QS mapping of
the circle induces a tesselation of the disk by distorted pentagons and
we can define a biLipschitz extension to the disk by simply mapping
each “regular” pentagon to its distorted image by a biLipschitz map. If
these maps are affine along the boundaries, then we get a continuous,
biLipschitz map of the hyperbolic disk to itself.

The hyperbolic metric on Ω1 is given by dρ1 = λ1ds for some smooth function

λ1 ≃ dist(z, ∂Ω1)
−1 (namely λ1 = |f ′|/(1 − |f |2) where f is a conformal map of Ω1

to D). This function satisfies an estimate

1−O(δ) ≤ λ1(w)

λ1(z)
≤ 1 +O(δ),

if ρ1(w, z) ≤ δ < 1. A similar estimate for Ω2. Since f is biLipschitz, the distance to

the boundary only changes by at most a factor of K under f . Thus

ρ2(f(z), f(w)) ≤ (1 +O(δ))λ2(z)|f(z)− f(w)|
≤ K(1 +O(δ))λ2(z)|z − w|

≤ K(1 +O(δ))
λ2(f(z))

λ1(z)
ρ1(w, z)

≤ K2(1 +O(δ))ρ1(x, y).

�

Quasiconformal maps are a generalization of biLipschitz maps, i.e., maps which

satisfy
1

K
≤ |f(x)− f(y)|

|x− y| ≤ K.

From the metric definition it is clear that anyK-biLipschitz map isK2-quasiconformal.
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For K-quasiconformal self-maps of the disk, there is almost a converse. Although

a quasiconformal map f : D → D need not be biLipschitz, it is a quasi-isometry of

the disk with its hyperbolic metric ρ, i.e., there are constants A,B such that

1

A
ρ(x, y)−B ≤ ρ(f(x), f(y)) ≤ Aρ(x, y) + B.

This says f is biLipschitz for the hyperbolic metric at large scales. A quasi-isometry

is also called a rough isometry in some sources, e.g., [?], [?]. We will say f is a

quasi-isometry with constant ǫ if we can take A = 1 + ǫ and B = ǫ.

In [?] Epstein, Marden and Markovic show that any K-quasiconformal selfmap

of the disk is a quasi-isometry respect to the hyperbolic metric with A = K and

B = K log 2 if 1 ≤ K ≤ 2 and B = 2.37(K − 1) if K > 2. Note that small circles

are asymptotically the same for the two metrics, so there is no difference between

“hyperbolic-quasiconformal” and “Euclidean-quasiconformal” maps. There is a dif-

ference, however, between “hyperbolic biLipschitz” and “Euclidean biLipschitz”.

Theorem 93. For a map f : D → D we have (1) ⇒ (2) ⇒ (3) ⇒ (4) where

(1) f is biLipschitz with respect to the hyperbolic metric.

(2) f is quasiconformal.

(3) f is a quasi-isometry with respect to the hyperbolic metric.

(4) There is a hyperbolic biLipschitz map g : D → D so that g|T = f |T.
In other words, the three classes of maps (hyperbolic biLipschitz, quasiconformal,

hyperbolic quasi-isometry) all have the same set of boundary values.

The boundary extension is a quasisymmetric homeomorphism, i.e., there is an

k <∞ (depending only onK) so that 1/k ≤ |f(I)|/|f(J)| ≤ k, whenever I, J ⊂ T are

adjacent intervals of equal length. Conversely, any quasisymmetric homeomorphism

of T can be extended to a K-quasiconformal selfmap of the disk, where K depends

only on k.

5. The Beltrami equation

Conversely, the “measurable Riemann Mapping theorem” says that given any

such µ, there is a K-quasiconformal map f with µ = ∂f/∂f . The Beltrami equation

∂f = µ∂f can be solved using a power series in µ by setting

f = P [µ(h+ 1)] + z,
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and

h = Tµ+ TµTµ+ TµTµTµ+ . . . ,

where T is the Beurling transform

Th(w) = lim
r→0

1

π

∫∫

|z−w|>r

h(z)

(z − w)2
dxdy,

and P is the Cauchy integral

Ph(w) = − 1

π

∫∫
h(z)(

1

z − w
− 1

z
)dxdy.

Formally, ∂P is the identity and ∂P = T . So if we choose f as above, then

∂f = µ(h+ 1),

∂f = Tµ(h+ 1) + 1 = h+ 1.

Hence, ∂f/∂f = µ(1 + h)/(1 + h) = µ, as desired. To make the argument rigorous

requires Lp estimates on these operators as described in [?], Chapter V.



CHAPTER 6

Schwarz-Christoffel iterations

In this chapter we consider a very simple iteration on the space of Schwarz-

Christoffel parameters (n-tuples of the circle modulo Möbius transformations) which

seems to work well in practice, but is not proven to converge in all cases. The

method can be interpreted as a version of Newton’s method for root finding in which

the derivative is assumed to be the identity. We will then see how to improve the

speed of covergence by using approximations of the Jacobian instead; first by discrete

approximation and then by the faster, but less accurate, method of Broyden updates.

1. The space of n-tuples

Suppose Ω is polygonal with vertices v = {v1, . . . vn} and f : D → Ω is conformal.

The Schwarz-Christoffel formula (“SC-formula” below) says

f(z) = A+ C

∫ z

0

n∏

k=1

(1− w

zk
)αk−1dw,

where απ = {α1π, . . . , αnπ}, are the interior angles of the polygon and z = {z1, . . . , zn} ⊂
T map to the corresponding vertices (these are called the SC-parameters). For fixed

angles, evaluating the SC-formula defines a map S from n-tuples in T to n-tuples in

C. In fact, S is a well defined map from T
n
∗ (n-tuples of distinct points on T modulo

Möbius transformations) into C
n
∗ (complex n-tuples modulo Euclidean similarities).

Moreover, we can identify T
n
∗ with R

n−3 as follows: fix a triangulation of the n points

on T, and for each pair of adjacent triangles record the logarithm of the cross ratio

of the four vertices (the cross ratio is positive if we take the correct ordering of the

four points). The original n-tuple can be recovered, up to Möbius transformations,

from these n− 3 real values so T
n
∗ = R

n−3. This allows us to apply linear algebra to

n-tuples on T.

Suppose we have a explicit way of guessing the SC-parameters for a polygon, i.e.,

a map G : Cn
∗ → T

n
∗ . Then F = G ◦ S gives a map R

n−3 → R
n−3 and the correct

171



172 6. SCHWARZ-CHRISTOFFEL ITERATIONS

SC-parameters for Ω solve F (z) = z0 (where z0 = G(v) ∈ T
n
∗ ) and hence are fixed by

zk+1 = zk − A−1(F (zk)− z0).(21)

where A is an (n− 3)× (n− 3) matrix. Taking the derivative matrix A = DF gives

Newton’s method (or take a discrete approximation to DF ). If F is close to the

identity, it may be much faster to just take A = I (the identity). A compromise is

to use Broyden updates, i.e., start with A = I and multiply A by a rank one matrix

at each step, chosen to optimize the approximation to DF given the evaluations of

F made so far (see [?]). This is often fastest in practice. If w = {w1, . . . , wn}, z =

{z1, . . . , zn} ∈ T, define

dQC(w, z) = inf{logK : ∃ K-QC h : D → D such that h(z) = w.}

FMA is locally convergent with respect to dQC . Is this true for some SC-iteration,

i.e., can we choose G and A so that (21) always converges to the SC-parameters? For

example, what about the following SC-iterations that are used in pratice?

2. Davis’s iteration

Define G by arg(zk+1) − arg(zk) = 2π|vk+1 − vk|/ℓ(∂Ω), i.e., parameter spacing

is proportional to the edge lengths of the polygon. Davis’s method is (21) with this

G and A = I. See [?], [?]. The idea behind Davis’ method is that for fixed angles,

longer edges should have larger harmonic measure. This is false in general (see Figure

1). Howell [?] showed Davis’s method in T
n locally diverges for this polygon, but

my own experiments indicate this example converges in T
n
∗ , i.e., the n-tuples diverge

unless we renormalize at each step by Möbius transformations. Is this always the

case? Prob Does Davis’s method converge? Does it converge locally w.r.t. dQC?

Figure 1. Left: longer edges can have less harmonic measure. Right:
a polygon and the SC-image using the CRDT guessed parameters.
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3. Newton’s method

4. Broyden updates





CHAPTER 7

Tree-of-disk maps

We want to find a conformal map from a polygon to the unit disk. Möbius

transformations are conformal, so could we build such a map from pieces that a

Möbius? In this chapter we will show how to build maps from ∂Ω to T which are

piecewise Möbius, easy to describe and compute explicitly and which approximate the

boundary values of a conformal map in a quasiconformal sense. This approximation

is not arbitrarily close, but it does lie within a quasiconformal neighborhood of the

true conformal map and the size of the neighborhood is independent of the domain.

Thus such maps may serve as good “initial guesses” for an iterative algorithm to find

the conformal. Indeed, one of the methods we discuss was proposed by Driscoll and

Vavasis exactly as a starting guess for their CRDT iteration (which we will discuss

later in this chapter). The other example we discuss comes from the medial axis of a

polygon and has close connections to 3-dimensional hyperbolic geometry.

1. The general set up

Suppose D = {Dk} is a finite collection of n disks in the plane (non necessarily

distinct; we may also allow disks of zero radius, i.e., points, in some cases). Suppose

also that these disks have been given the structure of a finite rooted tree, i.e., we

have a distinguished element D0 and a each disk Dk has a single parent D∗
k which

is adjacent to it and closer to the root (in the tree distance). Finally, assume that

for each non-root disk we are given a Möbius transformation τk : Dk → D∗
k. By

composing these maps along the unique path from Dk to the root D0 we obtain a

Möbius transformation σk : Dk → D0. Clearly this map can be constructed from the

τk’s in time O(n) by starting with the identity map σ0 : D0 → D0 and using

σk = σk∗ ◦ τk,
175
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to extend the map from a disk to its children (in this chapter, k∗ denotes the index

of the parent of Dk).

Figure 1. A tree-of-disks is a collection of disks in the plane, that
form the vertices of a rooted tree. We are also give a Möbius trans-
formation τD from each disk D to its parent D∗. By composing these
maps we obtain a map ιD from each disk to the root disk. Given a
polygon, we wish to find an associated tree of disks which contains the
vertices of the polygons and so that the ι map, restricted to the vertices
of P , is a good approximation to a conformal map.

In this chapter we consider two approximations to the Riemann map which can

be written as tree-of-disks maps. In the first example the tree comes from the trian-

gulation tree of a polygon and was invented by Driscoll and Vavasis as part of their

CRDT algorithm (although they used different method to describe it). In this case

the disks are the circumdisks of triangles in a triangulation of the polygon. Such disk

must overlap, and the τ maps we use are elliptic rotations around the intersection

points. The second example uses disks and tree structure coming from the medial

axis. Here the disks need not overlap, and more general transformations are used.

2. Triangulations
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Figure 2. A triangulation of a simple polygon. We show the triangles
as they are added one at a time, by the algorithm described in the text.
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Figure 3. Another triangulation of a simple polygon.
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Figure 4. Triangulation of a non-simple polygon.



180 7. TREE-OF-DISK MAPS

Figure 5. Delaunay triangulation obtained from general triangula-
tion by flipping diagonals. Each figure shows one pass through the list
of diagonals.

Figure 6. Delaunay triangulation obtained from general triangula-
tion by flipping diagonals. Each figure shows one pass through the list
of diagonals.
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Figure 7. Delaunay triangulation obtained from general triangula-
tion by flipping diagonals. Each figure shows one pass through the list
of diagonals.
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Figure 8. Delaunay triangulations of some more polygons.
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3. Delaunay triangulations and CRDT

Every polygon P has a triangulation T ; this is collection of triangles formed by

removing line segments that connect vertices of P within the interior of P . The

triangles form the vertices of a tree if we define triangles to be adjacent iff they share

one of the removed edges (i.e., share a boundary edge which is in the interior of P ).

Each triangle T is contained in a unique disk D whose boundary circle contains the

three vertices of T ; this is called the circumdisk. Note that circumdisks for adjacent

triangles overlap since they contain at least two points in common (the endpoints of

the shared edge of the two triangles). It is possible that the two disks are actually

identical, as in the case of a triangulation of a square by a diagonal. In this case, we

may wish to identity the two disks as a single disk. Alternatively, we may consider

them as distinct, but require the map between them be the identity.

When adjacent disks are distinct then their boundaries overlap at exactly two

points and there is an “obvious” Möbius map from one to the other given by an

elliptic rotation around these two points. Suppose D1, D2 are the disks and we want

to map D2 → D1. Note that D2 \ D1 is a crescent, and has an interior angle θ at

each vertex. The desired map is given by

τa,b,θ(z) =
(beiθ − a)z + ab(1− eiθ)

(eiθ − 1)z + (b− aeiθ)
.(22)

The formula can be easily derived by sending a and b to 0 and ∞ by the map

w = τ(z) = (z−a)/(z−b), then multiplying by eiθ and then applying the inverse map

z = τ−1(w) = (bw− a)/(w− 1). Geometrically, a crescent is foliated by circular arcs

orthogonal to both boundaries and this elliptic transformations identifies endpoints

of leaves. See Figure 10.

Thus to any rooted triangulation of a polygon, we can associate a tree-of-disks

where all the edge maps are elliptic. We can compose the edge maps to form an ι

map from each disk to the root. Since each vertex of P in on the boundary of some

triangle in the triangulation, it is also on the boundary of some disk in our tree-of-

disks and hence the ι map can be applied to it (one should check that if a vertex is on

the boundary of more than one disk, then we get the same image regardless of which

ι map we apply, but this is easy since the τ map corresponding to a triangulation

edge e fixes the endpoints of e).
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Figure 9. On the top we show a triangulated polygon and the cor-
responding collection of circumdisks. On the bottom we show the tree
corresponding to the triangulation and the tree corresponding to the
circumdisks, obtained from the triangulation tree by identifying adja-
cent vertices with identical corresponding disks (vertices to be identified
are grouped by the dashed lines).

Figure 10. The orthogonal foliation of a crescent

We would like to claim that the ι map we have constructed is uniformly close to

the a conformal map, i.e.,

dQC(ι(v), z) < C,
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Figure 11. On the left are various polygons and on the right is the
corresponding Schwarz-Christoffel image using the parameters given by
the CRDT intial guess. We have not performed the first step of CRDT
by adding extra vertices. Note that in some cases the SC image is not
simple.
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for some universal C independent of n or the polygon. Such an estimate is true, but

we need to impose some extra conditions:

(1) the triangulation should be a Delaunay triangulation.

(2) extra vertices (of angle π) are added to any edges that are “too long”.

We will explain each of these conditions in turn.

A polygon can have more than one triangulation, but there always exists a special

triangulation called the Delaunay triangulation with the property that when any two

of the triangles T1, T2 meet along an interior edge e, the two angles opposite e sum to

π or less. An equivalent condition is that the open disk D1 whose boundary contains

the three vertices of T1 does not contain T2 and similarly for D2 and T1. See Figure

5.

Figure 12. The triangles on the left satisfy the Delaunay condition,
but the ones on the right do not.

Figure 13. A Delaunay and non-Delaunay triangulation. We have
draw a circumcircle on the right which fails the Delaunay condition.

Every polygon has a Delaunay triangulation which is unique except when adjacent

triangles define four vertices on a common circle: then we may “flip” the diagonal of

the resulting quadrilateral and get another Delaunay triangulation. Note however,

that the corresponding family of disks and the tree-of-disk map on the vertices does
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not depend on the choice of Delaunay triangulation. Delaunay triangulations have

many nice properties and have been intensively studied (e.g., they are dual to Voronoi

diagrams; they maximize the minimum angle in the triangulation [?]; they minimize

the largest circumcircle [?], [?]). The basic facts can be found in various sources such

as [?], [?], [?], [?].

The second condition said that we may need to add extra vertices to P to make

sure that its Delaunay triangulation consists of “roundish” triangles. The precise

result we need is

Lemma 94. We can add extra vertices of angle π to the edges of P so that the

new polygon has a triangulation with the property that every triangle

(1) is isosceles with the base adjacent to its parent and base angle ≤ π/4,

(2) is isosceles with any angle and is a leaf of the triangulation tree with the base

adjacent to its parent or

(3) has all angles in [θ, π − θ] for some θ > 0.

Proof. We follow the construction from [?], which has two steps. In the first

step, every vertex with interior angle ≤ π/4 is “chopped off” by taking the largest

isosceles triangle T in P formed with v and subsets of its two adjacent edges and

adding two new vertices to P at the midpoints of the two sides of T . A new polygon

P ′ is formed by replacing v by these two new vertices and the edge between them.

This edge is protected: no new vertices may be added to it later. The second step

is iterative. For each edge e in the current polygon compute its length L and the

minimal distance D in P from e to any vertex which is not one of its endpoints

(distance is the path distance within the polygon). If D < L/(3
√
2), the edge e is

split into three equal edges and the process continues. See Figure ??. The filled dots

indicate the original vertices and the open dots the vertices added by the algorithm.

Driscoll and Vavasis give a lower bound r0 on the shortest edge that can be

produced: r0 is the minimum over all unprotected edges of the path distance in P

from that edge to any non-adjacent edge. Since every step reduces the length of

some edge by a third, this proves the process terminates in a finite number of steps

(and gives an estimate for the number of vertices that have been added). Thus the

resulting polygon has a triangulation in which every triangle T is either (1) isosceles
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Figure 14. Adding extra points to a polygon in the CRDT algorithm
to remove small angles from the triangulation

with angle ≤ π/4 or (2) D ≥ L/(3
√
2) for any side of T . The later condition easily

implies the angles of T are bounded away from 0, so Lemma ?? holds. �

Theorem 95. Assuming we take a Delaunay triangulation and add extra vertices

to O as described above, there is a C < ∞ so that the Driscoll-Vavasis guess w

satisfies dQC(w, z) ≤ C.

As Driscoll and Vavasis note in their paper [?], the number of new points needed

can be arbitrarily large, depending on the geometry of P (if P has a long, narrow

corridor, then many new vertices have to be added). It might be better to have a

tree-of-disks map that had the uniform approximation property described in Theorem

95, but which also comes with a uniform time bound to compute it. Such a map will

be described in the next section.

In their paper [] Driscoll and Vavasis did not express the initial guess of CRDT as

a tree-of-disks map. Instead they described it using the domain decomposition idea

described in Section 5 of Chapter 5. We review their definition briefly and then show

it is the same as what we have done.

Recall that given four distinct points a, b, c, d in the plane we define their cross

ratio as

cr(a, b, c, d) =
(d− a)(b− c)

(c− d)(a− b)
.



3. DELAUNAY TRIANGULATIONS AND CRDT 189

Figure 15. Three target polygons on the left and the SC image using
the initial guess of the CRDT algorithm.

Note that z → cr(a, b, c, z) is the unique Möbius transformation which sends a to 0,

b to 1 and c to ∞. Suppose P is a simple n-gon and that T = {T1, . . . Tn−2} is a

Delaunay triangulation of P . Let Dk be the circumcircle associated to each triangle

Tk, k = 1, . . . , n − 2. Choose some root triangle for the triangulation and map its

vertices to any three points in T with the correct orientation. In general, suppose Q

is the quadrilateral formed by two adjacent triangles T1 and T2 (which have vertices

v1, v2, v3 and v1, v3, v4 in counterclockwise order respectively). Also suppose that we

have already defined w1, w2, w3 ∈ T. Then w4 is uniquely determined by the condition

cr(w1, w2, w3, w4) = −|cr(v1, v2, v3, v4)|.(23)

It is easy to see by induction that this uniquely determines the points w up to a

Möbius transformation of the circle.
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Now suppose D1, D2 are the circumdisks associated to T1, T2 and τD2 : D2 → D1

is the elliptic Möbius transformation that fixes the two points ∂D1 ∩ ∂D2. After

conjugating by a Möbius transformation η which sends v1 → 0, v2 → 1 and v3 → ∞,

the elliptic map τD2 is conjugated to the Euclidean rotation around 0 which sends

the image to v4 onto the negative real axis. Thus

cr(v1, v2, v3, τD2(v4)) = −|cr(v1, v2, v3, v4)|.

The Möbius transformation ιD1 : D1 → D0 is then applied to the four points

{(v1, v2, v3, τD2(v4)} to give {ι(v1), ι(v2), ι(v3), ι(v4)}. Since Möbius transformations

do no change cross ratios

cr(ι(v1), ι(v2), ι(v3), ι(v4)) = −|cr(v1, v2, v3, v4)|.

Therefore w = ι(v) up to a Möbius transformation of the circle.

4. The CRDT iteration

As noted above Driscoll and Vavasis developed their initial guess for the Schwarz-

Christoffel parameters merely as a first step to an iteration that would attempt to

approximate the actual parameters arbitrarily well. We now describe this part of the

their CRDT algorithm.

Given an n-gon, compute a rooted Delaunay triangulation (which has n − 2 tri-

angles) and form the collection of n− 3 quadrilaterals {Qj}n−3
j=1 of adjacent triangles.

Let σj be the cross ratio of the four vertices of Qj (to be precise, assume the vertices

are ordered counterclockwise staring with the vertex in the parent triangle which is

opposite the side shared with the child triangle). Let cj = log |σj|. This defines map

G : Cn → R
n−3,

which takes the vertices of the polygon to the list of cross ratios.

Define a map from Φ : Rn−3 → C
n using the Schwarz-Christoffel map as follows.

From n − 3 real numbers cj, find σj = exp(cj). Then, using induction, find a trian-

gulated n-gon inscribed in the unit circle so that corresponding quadrilaterials have

cross ratios σj. Then use these points as the z-parameters and the fixed set of α’s to

evaluate the Schwarz-Christoffel formula
∫ zk

0

n∏

k=1

(1− w

zk
)αk−1dw,
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to find each of the n image vertices.

We want to find a set of parameters for the Schwarz-Christoffel formula which

gives a map (after linear renormalizing) onto our target polygon Ω0. In other words

we want to solve Φ(z) = v. This is the same as solving G(Φ(z)) = G(v) (at least

if we can show G is 1-1, which it is). Define another map F : Rn−3 = R
n−3, by

F = G ◦ Φ−G(v). Then the equation we want to solve is

F (σ) = 0.

We do this by defining a sequence

σ0 = G(v),

σk+1 = σn − F (σk).

Driscoll and Vavasis report that in experiments, this iteration converges linearly,

i.e.,

‖F (σk+1)‖2 ≤ λ‖F (σk)‖2,
for some λ < 1. However, there is currently no proof, or even explanation, for why

this holds.

The linear convergence observed in experiments is too slow for practical use, so

Driscoll and Vavasis us a non-linear equation solver NESOLVER due to Behrens.

This is the same as used by Driscoll’s SC-Toolbox. It uses approximations of F ′ to

implement a Newton type iteration. Driscoll and Vavasis report in [?] that this also

gives linear convergence, but at a better rate than the simple iteration.

5. The medial axis

The medial axis of Ω consists of the centers of all disks in Ω whose boundary hits

∂Ω in two or more points. See Figure 22. It is a one dimensional object that is used

in computer science to encode the shape of 2-dimensional objects and was introduced

by Blum in 1967 [?] (the same set, with a different name, also appears in a 1945

paper of Erdös [?]). There is a large literature describing its mathematical properties

and numerous applications including [?], [?], [?], [?], [?], [?]. It is a theorem of Chin,

Snoeyink and Wang [?], [?] that the medial axis of polygon with n vertices can be

computed in O(n) steps. This depends on a deep and difficult result of Chazelle [?]

that a polygon can be triangulated in linear time. However, special cases, such as
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Figure 16. Simple CRDT.
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Figure 17. Simple CRDT.
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2.5 5 7.5 10 12.5 15

-1

1

2

Figure 18. On the top is the target polygon and 17 iterations of the
simple CRDT iteration, reaching a QC error of at most 1.08388. On
the bottom is the graph of the log of the QC errors.
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Figure 19. On the top is the target polygon and 11 iterations of the
simple CRDT iteration. The polygon contains 4 1 × 20 rectangles, so
the aspect ration of the opposite thin sides is about 80 to 1. Even from
the center, the separation of some Schwarz-Christoffel parameters must
be less than ≃ exp(−π40) ≃ 10−55 which is far smaller than machine
precision ≈ 10−16. The remarkable aspect of CDRT is that it can
compute the conformal map from the disk to such a region accurately
regardless.

convex polygons are easier (see [?]) and O(n log n) methods have been implemented

for general polygons.

How does the medial axis of ∂Ω give a map from ∂Ω to the boundary of a disk?

If Ω is a finite union of disks, then its medial axis is a finite tree; vertices correspond

to disk that hit the boundary in three or more points. We can rewrite Ω as the union

of disks {Dk} corresponding to vertices of this tree. Choose one of these, D0, as the

root. Then each non-root disk has a parent disk (the one closer to the root) and if we

remove the parent from the disk, we are left with a crescent. Thus Ω may be written

as the union of the root disk and a finite union of crescents.

Every crescent has two natural foliations by circular arcs: one by arcs passing

through the two vertices (we call this the medial axis foliation) and the other by arcs

perpendicular to the first (the medial axis flow). Following leaves of the medial axis

flow gives an identification between the two boundary arcs of the crescent (this is
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Figure 20. A pentagon used in Figure 21

Figure 21. On the left is the composition of the SC map and the
CRDT map for the pentagon shown in Figure 20. On the right is the
simple CRDT iteation map z → z− (H(z)− z0). It appears from the
picture that iterations of this map will converge to a fixed point. In
both pictures the coordinates are logs of cross ratios and take values in
[−5, 5]2.
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Figure 22. Examples of medial axes of polygons

Figure 23. A finite union of disks written a union of a root disk
D0 and several crescents. Each crescent is foliated by circular arcs
orthogonal to the boundary and following the foliation gives a map
from ∂Ω to ∂D0.

the same as applying an elliptic Möbius transformation which fixes each vertex and

rotates one boundary arc to the other). Since Ω is written as a union of a root disk

and a finite union of crescents, we can compose the maps on each crescent and get a

map from ∂Ω to ∂D0. We call this the medial axis flow from ∂Ω to ∂D0. See Figure

23.

If Ω is bounded by an n-gon then the medial axis is still a finite tree and has O(n)

vertices and edges. The edges correspond to 1 parameter families of disks which meet

∂Ω at exactly two points and come in three types:
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(1) a line segment that is equidistant from two vertices

(2) a line segment that is equidistant from two edges

(3) a parabolic arc that is equidistant from a edge and a vertex.

For each edge of the medial axis, consider the union of medial axis disks centered

on that edge, minus the disk corresponding to the endpoint closer to the root. We

call these subdomains “generalized crescents” (in case (1) it is an actual crescent).

Together with the root disk, the generalized crescents decompose Ω into a finite

number of pieces and on each piece there is a foliation by boundary arcs of medial

axis disks and a corresponding orthogonal flow; the medial axis flow for that piece.

Figure 24 shows this foliation and flow for different types of generalized crescents,

Figure 25 shows the decomposition, foliation and flow for a polygon and Figure 26

shows just the foliation and flow for two more examples.

Figure 24. The medial axis foliation and flow corresponding to
different types of medial axis edges. The white disk in each picture
corresponds to the endpoint closer to the root.

To visualize where the vertices of the polygon are mapped we simply follow the

medial axis flow from ∂Ω to ∂D0. However, to actually compute these images, we

start by defining a map from each medial axis vertex disk to its parent.

Suppose e is an edge of the medial axis, D,D∗ are the disks corresponding to

its endpoints and D∗ is the parent of D (i.e., is closer to the root). Let Ωe be the
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Figure 25. This shows the medial axis flow for the polygon illus-
trated on the right of Figure 22. The top picture shows the a root disk
and the generalized crescents, labeled by their type. The bottom figure
shows the medial axis flow. The landing points of the vertices are the
parameter guesses.

corresponding generalized crescent. The medial axis flow in Ωe defines a map from

∂D∩∂Ωe to ∂D
∗∩∂Ωe. For type 1 edges this is just an elliptic Möbius transformation

(with fixed points ∂D ∩ ∂D∗), and we shall see that it is a Möbius transformation

τD : D → D∗ in all cases. Moreover, we shall give explicit formulas τD in terms

of D,D∗ and the type of edge. The medial axis flow map from D to the root,

ιD : D → D0 is the composition of the maps τDk
, where {Dk} is a path from D to

D0. This map can easily be computed in linear time by induction and the formula

ιD = ιD∗ ◦ τD,
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if the disks are arranged in a list starting with the root (for which ιD0 is the identity

map) and so that every disk comes later that its parent on the list. Since each map

is a Möbius transformation, we only have to record a 2× 2 matrix for each disk and

the composition above corresponds to matrix multiplication.

For each concave vertex v of the polygon (i.e., those with interior angle ≤ π),

we will choose a medial axis disk D with v ∈ ∂D and define ι(v) = ιD(v). If v is

a convex vertex then it is the endpoint of a medial axis edge whose other endpoint

corresponds to a disk D. We will map v to the closest point v∗ of ∂D and then define

ι(v) = ιD(v
∗). This defines ι at every vertex and gives the parameter guesses w used

in Theorem ??.

Theorem 96. There is a C < ∞ (independent of P ) so that the ι map satisfies

dQC(ι(v), z) ≤ C.

Thus the medial axis flow provides an O(n) algorithm for computing guesses

for the Schwarz-Christoffel parameters that are guaranteed to be within a uniform

distance of the correct parameters. We will prove this later without an explicit

estimate of C, but a more detailed analysis (carried out in [?]) shows that we can

take C = log 8 and an example from [?] shows C > log 2.1. However, there may be

other, still undiscover3ed, tree-of-disk constructions which give fast approximations

with even better bounds. Can the reader find one?

Figure 26 shows two more examples of the medial axis flow in a polygon. Figures

28 - ?? each show four pictures: the target polygon in the upper left, the medial

axis flow in the upper right, the Schwartz-Christoffel image using the medial axis

flow parameters in the lower left and the Schwarz-Christoffel image using equispaced

parameters in the lower right. Comparing the latter two, we see that the medial axis

flow always gives a better approximation and often gives quite a good approximation.
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Figure 26. More examples of the medial axis foliation and flow.

Figure 27.
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Figure 28.

Figure 29.



6. FORMULAS FOR THE ι MAP 203

6. Formulas for the ι map

As noted earlier, to compute ι for a polygon, we only have to compute the Möbius

transformation for each generalized crescent, i.e., compute the maps between disks

corresponding to vertices of the medial axis. Let D denote the disks that correspond

to vertices of the medial axis and assume we have chosen a root disk, D0. Below, we

will describe how to map a disk D1 ∈ D to its parent D2 ∈ D. The map from D1 to

the root disk can then be computed by composing with the corresponding map for

the parent (which we may assume has already been computed). To map the vertices

of ∂Ω to ∂D0, map there are two cases. For concave vertices v (interior angle ≥ π)

choose a medial axis vertex disk D so that v ∈ ∂D and apply the map ιD to v. If v lies

on the boundary of more than one such disk, each of the corresponding maps must

agree at v, so it does not matter which disk we choose. Each convex vertex (interior

angle < π) it the endpoint of a type 2 edge of the medial axis. The other endpoint

is a vertex of the medial axis and we map v onto the boundary of the corresponding

disk D by simply mapping it to the closest point of ∂D and then applying ιD to map

the point to ∂D0.

We now consider each type of medial axis edge.

Case 1 (point-point bisector): If the two disks are D1 = D(z1, r1) and D2 =

D(z2, r2) with D2 being the parent, then the desired map is just the unique elliptic

Möbius transformation which fixes the two points, a, b of ∂D1∩∂D2 and maps ∂D1\D2

onto ∂D2 ∩D1 by an elliptic rotation τ of angle α, the interior angle of the crescent.

If r = |z1 − z2|, law of cosines implies

cosα = β =
r2 − r21 − r22

−2r1r2
,

and hence eiα = β + i
√
1− β2. Similarly,

a = z2 +
r2
r
eiθ(z1 − z2),(24)

b = z2 +
r2
r
e−iθ(z1 − z2),(25)

where cos θ = (r21−r2−r22)/(−2rr2). Thus τ is given by the formula τ(z) = σ−1◦Rα◦σ,
where Rα(z) = eiαz and σ(z) = (z − b)/(z − a) sends a to ∞ and b to zero.

Case 2a (edge-edge bisector, parallel case): Consider Figure 30. Suppose

the two endpoint disks have centers z1, z2 and common radius r1 = r2. We normalize
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so that these disks become D1 = D(0, 1) and D2 = D(A, 1) using the map

η(z) = (z − z1) ·
|z2 − z1|

(z2 − z1)r1
.

i

−i

2

A

A0
a

b

c

Figure 30. Case 2a: between parallel lines

Let D(xk, 1) be a collection of disks of radius 1 centered at points xk = Ak/n

for k = 0, . . . mn and let τk : D(xk, 1) → D(xk−1, 1) be the elliptic tranformation

that fixes the two points where the bounaries intersect. Let σn : D2 → D1 be the

composition of these maps. The map D2 → D1 we want is the limit of these maps

as n→ ∞. Since this map is a Möbius tranformation and is symmetric with respect

to the real axis it must map A+ 1 to 1 and A− 1 to −1 and is the composition of a

Euclidean translation from D2 to D1 followed by a hyberbolic self-map of D1 which

fixes ±1, i.e., it is of the form

z → z − A→ µ(z − A),

where µ is of the form

µ(z) =
z − a

1− az
,

for some a ∈ (0, 1). The map µ is determined by a and a can be determined by the

derivative of µ at z = 1 using

µ′(z) = (
z − a

1− az
)′ =

1− a2

(1− az)2
,

which implies

µ′(1) =
1− a2

(1− a)2
=

1 + a

1− a
,

or

a =
µ′(1)− 1

µ′(1) + 1
.
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So it is enough to compute µ′(1).

By the chain rule this will be the same as [τ ′n(A)]
n, so we really only need compute

τ ′n(A). Clearly it suffcies to consider two disks of unit radius centered at ±ǫ where
ǫ = 1

2
A/n. The elliptic map has fixed points at ±iλ = ±i

√
1− ǫ2 and maps 1 + ǫ to

1− ǫ. We can write this map as a composition of three maps,

z → ν(z) =
z − iλ

z + iλ
,

which maps the vertices to 0 and ∞, a rotation around the origin and finally by

ν−1. By the chain rule the absolute value of the derivative of the elliptic map at

1+ ǫ is the product of the absolute values of thederivatives of the threee maps in the

composition. The rotation has derivative of modulus 1, so contributes nothing. Thus

|τ ′n(A)| = |ν ′(1 + ǫ)|/|ν ′(1− ǫ)|.

By explicit calculation

ν ′(z) =
2iλ

(z + iλ)2
,

so

|ν ′(1 + ǫ)|/|ν ′(1− ǫ)| = |1− ǫ+ iλ|
|1 + ǫ+ iλ| .

By the Pythagorean theorem

|1− ǫ+ iλ| = sqrt(1− ǫ)2 + λ2 =
√
1− 2ǫ+ ǫ2 + 1− ǫ2 =

√
2− 2ǫ,

and similarly,

|1 + ǫ+ iλ| =
√
2 + 2ǫ.

Thus

|τ ′n(A)| =
1− ǫ

1 + ǫ
= 1− 2ǫ+O(ǫ2).

Therefore, since ǫ = 1
2
A/n,

|τ ′n(A)|n = (1− 2
A

2n
+O(n−2))n = e−A(1 + o(1)).

Taking the limit as n→ ∞ gives µ′(1) = e−A, which gives

a =
1− e−A

1 + e−A
.
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Of course, we could experiment with other possible values as well. We shall see

in the next chapter that there is a strong reason based on hyperbolic geometry for

thinking that

a =
1− e−πA/2

1 + e−πA/2
,

would be an even better choice. If we make this change, we will refer to the resulting

tree-of-disks map as the “modified ι map”.

Case 2b (edge-edge bisector, non-parallel case): The situation is shown

in Figure 31. We will assume D1 is smaller than D2; the opposite case is handled

similarly. Suppose the endpoint disks are D(z1, r1) and D(z2, r2) with r1 < r2 and

normalize by a linear map η so that they become D1 = D(1, B) and D2 = D(y, yB)

for some B > 0, y > 1. This can be done with the map

s = r1|z1 − z2|/(r2 − r1)

z3 = z1 + s(z1 − z2)/|z2 − z1|
η(z) = (z − z3)/(z1 − z3).

Thus B = r1/|z1 − z3|, y = |(z2 − z3)/(z1 − z3)|. The points labeled a, b in Figure 31

are mapped to c, d respectively.

1

B

y Ba

b
d y2α0
c

Figure 31. Case 2b: between non-parallel lines

As in the parallel case, the map D2 → D1 we want is a limit of maps which are

each compositions of elliptic transformations along a chain of disks running from D2

to D1. In this case the disks are of the form D(xn, rn) where xn = yk/n and rn = Bxn.

We can also think of the desired map as the linear map D2 → D1 given by z → z/y,

followed by a hyperbolic self-map of D1 that fixes 1 ± B and is determined by its

derivative at 1+B. Again by the chain rule, this derivative is τ ′n(1+B)n. As before,
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this elliptic can be written as a composition of map sending the fixed points to 0,∞,

a rotation and the inverse of the first map. Also as before, the rotation contributes

nothing, and the deriviative is y2/x2 where y is the distance from y(1 + B) to the

fixed points and x is the distance from xn−1(1 + B) to the fixed points. See Figure

5. set ǫ = 1
n
log y. By the law of cosines

x2 = B2 + B2 − 2B2 cos(
π

2
+ α) = 2B2(1 + sinα),

and

y2 = B2 + (ǫ+ (1 + ǫ)B)2 + 2B(ǫ+ (1 + ǫ)B)2 sinα.

Compute the derivative of y2 with respect to ǫ to get

d

dǫ
y2 = 2(ǫ+ (1 + ǫ)B)(1 + B) + 2B(1 + B) sinα,

which at ǫ = 0 becomes

2B(1 + B) sinα,

so near ǫ = 0,

y2 = x2 + 2B(1 + B) sinαǫ+O(ǫ2).

This implies

|τ ′n| =
y2

x2
= 1 + (1 +

1

B
)ǫ+O(ǫ2).

Thus

|τ ′n|n = (1 + (1 +
1

B
)
log y

n
)2(1 + o(1)) = elog y(1+

1
B
)(1 + o(1)) = y · y1/B(1 + o(1)).

This means the self-map of D1 hasa derivative y1/B at 1 + B and hence is given by

z → 1− a

1− az
,

where

a = 1− y1/B1 + y1/B = 1− e− log y/B1 + e− log y/B = 1− e−A1 + e−A.

Thus the desired map τ : D1 → D2 is

τ(z) = yBσ(
1

B
(z − 1)) + y,

where

σ(z) =
z − a

1− az
.
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If r1 > r2 then the mapping is almost same, except that now 0 < y < 1, so

A = log y/r is negative. Thus we define a = −(1 − eA)/(1 + eA) and proceed as

before.

As in the case of parallel edges, consideration of the hyperbolic metric will later

lead us to think we should replace A by A = π
2α

log y. If we make this change we will

call the resulting map the modified ι map, as before.

Case 3 (point-line bisector): This case is pictured in Figure 32. Here we have

a parabolic edge of the medial axis which is the bisector of a line segment and a point

(a vertex of the polygon). There are actually two cases depending on the orientation

of the picture: as we traverse the medial axis edge towards the root, the vertex can

either be on our left or on our right. We will assume it is one the right, as illustrated

in Figure 32, and the other case is handled similarly.

Suppose a is the vertex in question (computed from D1 and D2 as in (24)) and L

is the line. Then L is tangent to D1 and D2 at points c, d given by

c = z1 + r1e
iθ z2 − z1

r
, d = z2 + r2e

iθ z2 − z1
r

,

where cos θ = (r1 − r2)/r and r = |z2 − z1|, as before. Let a∗ be the reflection of a

across L. This is given by

a∗ = c+ (ā− c̄) · (d− c)/(d̄− c̄).

Then D1 can be mapped to D2 by an elliptic Möbius transformation which fixes a

and a∗ and sends L to itself. This elliptic element rotates around a by some angle

θ. We will think of this as a composition of n separate rotations, each by angle

θ/n. Applying each of these rotations in turn produces a sequence of disks {Bk}
intermediate between D1 and D2. Let τk : Bk → Bk+1 be the elliptic map that fixes

the two points of intersection {a, bk} = ∂Bk ∩ ∂Bk+1. The generalized crescent being

considered is the limit of the union of these disks and so τn ◦ · · · ◦ τ1 converges to the

desired τ : D1 → D2 as n→ ∞.

To understand this composition better, we will conjugate by a Möbius transfor-

mation that converts the maps τk into linear maps. To do this, we have to map one

of the fixed points to ∞. Consider the map

η(z) = (−i)(z − a∗

z − a
)(
c− a

c− a∗
).
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a

L

θ

d
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θ

c

b a*

d

c

Figure 32. Case 3: equidistant from a point and a line. On the
left is the family of circles passing through a and tangent to L. On
the right we have conjugated a to ∞ and L to the unit circle. The
converted τk maps are rotations around the white dots.

This sends a → ∞, a∗ → 0 and c → −i. Moreover, the line L maps to the unit

circle and each of the disks Bk is sent to a half-plane tangent to the unit circle. The

maps τk must therefore be sent to rotations by angle θ/n around the points where the

boundaries of the kth and (k + 1)st half-planes meet. In the limit, the composition

of these maps is simply “rolling” a line counterclockwise around the unit circle, i.e.,

is σ(z) = eiθ(z − θ). Thus τ = η−1 ◦ σ ◦ η.
If we are in the other case, when the vertex is on the left, then we define the point

a using (25) instead of (24), Similarly c, d are now defined using −θ in place of θ.

Then define η as before. The σ map now rolls a line clockwise around the unit circle,

i.e., σ(z) = (z + θ)e−iθ. We have now completed the proof of Theorem ??.

Estimates of hyperbolic distance lead to a modification of ι in this case as well.

Take σ(z) = e±iθ(z ∓ 2θ) for the modified map.

If we put our guesses into the Schwarz-Christoffel formula we get a locally 1-1 map

of the disk to a polygonal region (possibly overlapping itself) which has all the correct

angles and which can be mapped to the desired region by a quasiconformal map with

uniformly bounded constant and with vertices mapping to vertices. Figure 33 shows

five such polygons and the corresponding regions using the ι map and modified ι map

to guess the parameters. (The curved “S” shape is actually a 100-gon.) Figures ??

gives some more comparisons using the unmodified ι map.
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Figure 33.
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Figure 34.
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7. ι decreases length

If we restrict the map to ∂Ω = ∂SΩ, we have defined ι as a composition of elliptic

Möbius transformations on each circular arc in ∂Ω. Note that the crescents that we

use are always of the formW = D2 \D1 and that we are mapping the edge ∂W ∩∂D2

to the edge ∂W ∩ ∂D1. Thus we are in the case of the following lemma.

Lemma 97. Suppose Ω is a crescent which lies on one side of the line L passing

through the two vertices. Let γ1, γ2 be the circular arcs in ∂Ω with γ1 between γ2 and

L. If τ is an elliptic Möbius transformation fixing the two vertices and mapping γ2

to γ1 then |τ ′(z)| ≤ 1 on γ2.

Proof. To see this suppose τ(z) = (az + b)/(cz + d) where ad − bc = 1 (which

we can always assume by normalizing). Then a simple calculation shows |τ ′(z)| < 1

iff |1/c| < |z + d/c|. Note that −d/c = τ−1(∞). By normalizing by a Euclidean

similarity, we may assume the vertices are 1 and −1 and the crescent lies in the

upper half-plane. See Figure 35. Then −d/c is on the negative imaginary axis and

|τ ′(z)| < 1 outside a circle C centered at −d/c passing through −1 and 1 (since the

derivative of an elliptic transformation has modulus one at the two fixed points). Let

γ be the arc of this circle between 1 and −1 which lies in the upper half-plane. We

claim that γ2, the upper edge of our crescent, lies above γ.

Suppose the elliptic transformation is a rotation by θ around the points −1, 1.

Since γ2 and its image are both in the upper half-plane, θ < π. Therefore −d/c
lies on a circle which makes angle π − θ with the segment [−1, 1]. See Figure 35.

Hence the isosceles triangle with base [−1, 1] and vertex −d/c has two base angles of

ψ = (π− θ)/2 and the circle C makes angle π/2−ψ = θ/2 with [−1, 1]. Since γ1 lies

in H, γ2 makes angle of at least θ with [−1, 1] and hence lies above C. �

This implies that for finite unions of disks, the map ι : ∂Ω → ∂D0 can be chosen to

have derivative < 1 on ∂Ω (except possibly at the vertices). By taking approximations

and passing to the limit we obtain:

Lemma 98. If Ω is simply connected Jordan domain and contains the unit disk,

then we can choose ι so that ι : ∂Ω → T does not increase the length of any boundary

arc.
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π−2ψ

π−θ
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π/2

γ2
γ1

1−1
γ

Figure 35. The setup in Lemma 97. We prove that γ2 lies above
γ by showing that γ makes angle θ/2 with [−1, 1], but γ2 makes angle
> θ with the same segment.

8. Uniform bounds for tree-of-disk maps

Earlier in this chapter we have claimed that both tree-of-disks constructions, the

CRDT initial guess and the medial axis flow, give mappings of the vertices of a

polygon onto the unit circle which are within a uniformly bounded quasiconformal

distance of the the true conformal prevertices. In this section we will give a proof of

this for the medial axis, and only indicate the additional steps that are needed for

the CDRT case. For the full argument, see [?]. A second proof for the medial axis

case will be sketched in the next section, where we describe the connection between

the medial axis flow and certain ideas from hyperbolic geometry.

Theorem 99. There is a C < ∞ (independent of P ) so that the ι map satisfies

dQC(ι(v), z) ≤ C.

The medial axis flow is the limit of flows on domains which are finite unions of

disks and where the flow from each disk to its parent is simply along the orthogonal

foliation of the crescent D∗ \D. Therefore it is enough to prove the result for such

domains (if we have a uniform bound, we can then pass to the limit).
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Suppose we have two adjacent disks D1, D2. Assume these disks are distinct and

the boundaries intersect at exactly two points a, b. Let γ1 and γ2 be the hyperbolic

geodesics connecting a and b in D1 and D2 respectively. Then γ1 ∪ γ2 forms the

boundary of a crescent C in D1 ∪D2 with some angle θ. This is called the “normal

crescent” since its edges are perpendicular to the boundary of D1 ∪D2. If D1 = D2

then the normal crescent has angle 0 and consists of a single geodesic arc. The diskD1

nay be adjacent to several other disks. For each such disk form the normal crescent

and remove it from D1. These leaves several components, but only one it adjacent to

all the removed crescents. This is called the gap associated to D1. when we do this

for every disk in our collection we partition our domain into a finite union of gaps

and crescents; one gap for each disk and one crescent for each pair of adjacent disks.

See Figure 37 for an example of this “gap/crescent” decomposition.

Figure 36. A gap/crescent decomposition for a tree of disks. When
we collapse the crescents by elliptic maps the gaps come together to
form a disk. This defines a continuous map ϕ from the tree of disks
to the root disk. We have drawn arcs to indicate crescents with zero
angle; this occurs when adjacent triangles have all four vertices on a
single circle. We have further subdivided the gaps by adding “boundary
crescents” whose edges complete the hyperbolic triangulation of the
disk.

Assume that the the m disks in our tree are enumerated as {Dk} so that D0 is the

root and so that any disk has a lower index than any of its children. Define a sequence

of surfaces {Rk} inductively by setting R0 = D0 and defining Rk by attaching the

crescent D∗
k \ Dk to Rk−1. Define a map Γk : Rk → Rk−1 by extending the map

Γ : Dk−1 ∪ Dk → Dk−1 as the identity on the rest of Rk. Then Φ : Γ1 ◦ · · · ◦ Γm is
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Figure 37. On the left is a gap/crescent decomposition for the do-
main corresponding to the polygon in Figure 9. On the right is the
Φ image of the decomposition. Note that every crescent has been col-
lapsed to a hyperbolic geodesic and each gap has been mapped into the
disk by a Möbius transformation.

a mapping from R = Rm to D0 = R0. It is equal to the identity on the gap of D0,

is equal to some Möbius transformation on the gap of every other disk and collapses

each normal crescent to a hyperbolic geodesic of D0 (these are called the bending

geodesics, a term coming from hyperbolic geometry). See Figure 37. Note that Φ

is not a homeomorphism, since arcs in the normal crescents are collapsed to points,

but at least it does map the interior of R to the interior of D0. We shall see that Φ

is actually close to a homeomorphism in a precise sense.

Lemma 100. Suppose G is a gap in R and z ∈ G. Let D be the disk associated

to G. Then
1√
2
dist(z, ∂Rp) ≤ dist(z, ∂D) ≤ dist(z, ∂Rp).

Proof. The right hand inequality is obvious since D ⊂ R. To prove the left hand

inequality, note that if z = 0 or if the radial projection of z is in ∂R then we have

equality. Otherwise, the radial segment through z hits a geodesic γ in D bounding a

crescent. Replacing z with this point of intersection decreases dist(z, ∂D) more than

dist(z, ∂Rp) and for a point on γ, the inequality holds by a simple computation. �

On each gap G, ϕ is an isometry from the hyperbolic metric of the corresponding

disk D to the unit disk. We have just seen that this metric (restricted to G) is
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comparable to the hyperbolic on R and hence ϕ is Lipschitz on G. On the crescents

ϕ is clearly Lipschitz, and thus it Lipschitz on all of R.

To prove ϕ is a quasi-isometry, we need to prove the opposite direction

ρD(ϕ(z), ϕ(w)) ≥ CρR(z, w)− C.

It suffices to show that for some ǫ > 0 the preimage under ϕ of a ball of hyperbolic

radius ǫ in D has uniformly bounded hyperbolic diameter in R. If this is true, then

any two points distance d > ǫ apart in D can be connected by a geodesic, and this

geodesic can be cut into ≃ d/ǫ parts, each of which has preimage of diameter C.

Thus the two original points have all preimages within (C/ǫ)d of each other, which

is the desired lower bound.

The key step to proving this is the following.

Lemma 101. There is a ǫ0 > 0 and C < ∞ so that if ǫ < ǫ0 then the following

holds. Suppose {τj}M1 is a finite collection of elliptic transformations such that each

τj rotates by angle θj, that
∑

j |θj| ≤ L and that each τj has one fixed point in D(0, ǫ)

and one fixed point outside D(0, 1/ǫ). Then |τ1 ◦ · · · ◦ τM(w)−w exp(i
∑

j θj)| ≤ CǫL

for any w with 1
2
≤ |w| ≤ 2.

Proof. Each elliptic transformation preserves a family of circles and by the hy-

pothesis on the fixed points, the circles in these families of diameter between 1/4 and

4 differ by at most angle Cǫ from circles concentric with the origin. Thus if τj rotates

by angle θj it will differ from a rotation of angle θj around the origin by at most

Cǫθj. See Figure 38. Summing gives the desired result. �

Suppose ǫ < ǫ0/2 and consider a ball B of hyperbolic radius ǫ in D. Renormalizing

by a Möbius transformation we may assume it is centered at the origin. If is it

contained inside the image of one gap G ⊂ D ⊂ R, there is nothing to do, since the

preimage has smaller size in R. Thus B must hit one or more bending geodesics (i.e.,

images of crescents under ϕ). Let {γj} be an enumeration of these and let θj be the

angle measure of the corresponding crescents in R. Since each of these hits B, the

endpoints of all the γ’s must be clustered in two balls of (Euclidean) radius δ (which

tends to zero with ǫ) on opposite side of the circle. Without loss of generality we

may assume this balls are centered at −i and +i.
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θ1

θ2

0 1

Figure 38. If the fixed points are ǫ-near 0 and ∞ the elliptic trans-
formations look like Euclidean rotations up to error Cǫ.

By applying a Möbius transformation taking the unit disk to the upper half-plane

we can instead assume these geodesics are in H and each has one endpoint in [0, δ]

and the other outside [1/δ,∞]. These geodesics also come with a natural left to right

ordering and each has an associated elliptic Möbius transformation which rotates

by angle θj around the endpoints of γj. If we apply these maps from rightmost to

leftmost, letting the map act on everything to the right of the corresponding geodesic,

we get the map ϕ on the gaps.

Let B2 be the ball of radius 1/2 centered at i. If
∑

j θj = L ≥ 2π then Lemma

101 implies the preimage of B2 in R covers the unit circle more than once at some

point. Since our domain is planar, this is a contradiction, so we must have L < 2π.

But this means that the preimage of B is a connected set in R which can be covered

by a uniformly bounded number of balls of radius 1/4 which are more than distance

1/4 from ∂R. Each element of this cover therefore has bounded hyperbolic radius in

R and hence the preimage of B had uniformly bounded radius.

Thus ϕ is a quasi-isometry with uniformly bounded constants and thus there is

a K-quasiconformal map R → D (with uniformly bounded K) that has the same

boundary values. This completes the proof of Theorem ??

The proof given here is not explicit. An argument of Epstein and Marden’s in [?]

implies a quasiconformal constant K ≈ 82.6 and they conjectured K0 = K = 2 is

correct. In [?] it is proven that one can take K = 7.82. More recently Epstein and
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Markovic [?] have shown that K > 2.1, by showing the K is at least this large when

Ω is the complement of a certain logarithmic spiral.

The proof presented in this section generalizes to proving the initial guess of the

CRDT algorithm also gives values that are within a uniform QC distance of the true

prevertices. The argument is more complex however, mostly because we have to

introduce a possibly non-planar Riemann surface in place of the planar, finite union

of disks used above. The main steps are as follows:

(1) Given a polygon P with interior Ω, we define a Riemann surface R so that

Ω ⊂ R in a natural way and the vertices of P lie in ∂Ω ∩ ∂R. We then

define two maps Ψ : Ω → R and Φ : RD. The map Ψ is the identity on the

vertices of P and the map Φ maps them to the CRDT guesses. Thus the

composition Φ ◦ Ψ is a map Ω → D which extends the CRDT initial guess

to the whole interior. To prove the claim we have to show this map has a

uniformly bounded QC constant, so it suffices to show each of the two maps

has uniformly bounded constant.

(2) We build the surface R as follows. Given the polygon, compute a rooted

Delaunay triangulation and associate to each triangle its circumdisk. Assume

the disks are listed as D0, D1, . . . with D0 the root and each disk occurring

later in the list than its parent. Build a sequence of surfaces inductively

starting with R0 = D0, the root disk. For k = 1 we attach the crescent

D1 \ D0 to R0. This gives a surface which is still a planar domain, i.e.,

a union of two disks. At the kth step, we attach the crescent Dk \ (Dk)
∗

to Rk−1 (by assumption the parent of Dk occurred earlier in the list so the

boundary of this crescent is already part of the boundary of Rk−1). However,

this crescent is considered disjoint from Rk−1, and this means that Rk−1 may

not be a planar domain. R = Rn, where n is the number of elements in our

triangulation.

(3) The map Ψ : Ω → R is fairly easy. One each interior triangle of the triangu-

lation, the map is the identity. On boundary triangles the map Ψ “blows up”

the triangle to the union of itself and one or two crescents attached along its

non-interior edges. This is completely explicit and has uniformly bounded
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QC constant as long as the step one of CRDT has been done (i.e., extra

vertices added to P to make sure it has a nice triangulation).

(4) Constructing the map Φ : R → D, is more complicated, but completely

analogous to the construction for the planar union of disks discussed in this

section. Define a map ∂Rk → ∂Rk−1 by collapsing the crescent Dk \ (Dk)
∗

along the orthogonal foliation lines. Extend this map to the interior using

the gap/crescent decomposition.

(5) Prove that Lemma 5 holds for the surface R. This requires some property

of R that say it is not too far from being a planar domain. In [] it is shown

that any curve in R which projects to a circle can cover that circle at most

3-to-1. This property, combined with an extremal length argument is used

to prove the desired estimate on harmonic measure. This show that map

Φ : R → D is Lipschitz, just as before. The proof of the opposite direction

(the lower bound in the definition of quasi-isometry) is exactly the same as

before, except now the number 2π is replaced by 6π since a circle in R can’t

cover a circle more than 3 times.

9. The factorization theorem and Brennan’s conjecture

we have proved that any simply connected polygonal domain Ω which contains a

disk of radius 1 has a quasiconformal map φ : Ω → D so that both the quasiconformal

constant is uniformly bounded and |ϕ′| ≤ 1 on ∂Ω. From this it follows that we can

find another quasiconformal map (also with a uniformly bounded QC constant) so

that |ψ′| is bounded over all of Ω. By passing to the limit this must be true for all

simply connected domains.

Corollary 102. If Ω is any simply connected domain then there is a Lipschitz

homeomorphism from Ω with its internal path metric to the unit disk with its usual

Euclidean metric.

Recall that a domain Ω is called quasiconvex if there is a C < ∞ so that any

two points x, y ∈ Ω can be joined by a path in Ω of length at most C|x − y| (i.e.,
the internal path metric is comparable to the Euclidean metric). The following is an

immediate corollary of the previous result
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Corollary 103. If Ω is quasiconvex, there is a Lipschitz homeomorphism from

Ω to the disk (with respect to the Euclidean metric on both domains).

If Ω is a quasidisk, then it is quasiconvex. Moreover, in this case there is also a

biLipschitz reflection across ∂Ω, so it is easy to prove the following:

Corollary 104. If Γ is a bounded quasicircle then there is a quasiconformal,

Euclidean Lipschitz map of the plane which maps Γ to the unit circle.

Corollary 105. [The factorization theorem] There is a universal K <∞ so the

following holds. Suppose f : D → Ω is conformal. Then f = g ◦ h, where h : D → D

is a K-quasiconformal self-map of the disk and g : D → Ω is expanding in the sense

that |g′(z)| > C|f ′(0)| for all z ∈ D.

The proof will actually show that g has the property that

min
Q

|g′(z)| ≥ Cmax
T (Q)

|g′(z)|,

for any Carleson square Q and its top half, T (Q). Thus |g′| almost behaves as if it

were increasing near the boundary.

This is a pretty result that quantifies the idea that a conformal map of the disk can

have an unlimited amount of expansion, but only a bounded amount of contraction.

Many problems and results in geometric function theory seek to quantify this various

different ways. One of the most famous such problems is Brennan’s conjecture.

Suppose Ω is a simply connected plane domain and F = f−1 : Ω → D is a con-

formal map. It is obvious that
∫
Ω
|F ′|2dxdy = area(D) = π so that F ′ ∈ L2(Ω, dxdy),

but it is not clear what other Lp spaces F ′ must belong to. Gehring and Hayman

(unpublished) showed that F ′ ∈ Lp for p ∈ (4
3
, 2] and showed the lower bound is

sharp. Metzger [?] improved this to p ∈ (4
3
, 3). In 1978 James Brennan [?] improved

this by showing one can take p ∈ (4
3
, p0) for some p0 > 3 and conjectured that p0 = 4

is possible (this is sharp since the Koebe function mapping D → C \ [1
4
,∞) gives an

F ′ 6∈ L4). If one prefers to consider maps f : D → Ω then it is easy to check by

change of variables that f ∈ Lp it is equivalent to
∫

D

|f ′|2−pdxdy <∞.
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The best estimate (so far as I know) is currently due to Bertilsson [?], [?] who showed

p0 ≥ 3.422. This is a slight improvement of the earlier result of Pommerenke [?, ?],

that p0 ≥ 3.399.

In addition to its intrinsic interest, the Brennan conjecture has interesting con-

sequences (e.g. see Section ??) and is currently under intense investigation. Some

recent papers on the Brennan conjecture include the work of Carleson and Makarov

[?], Hurri-Syrjänen and Staples [?], Volberg and Zdunik [?]. Moreover, the Bren-

nan conjecture is now just a special case of the more general “universal spectrum

conjecture”, e.g., [?], [?]. Recall Astala’s recent (and remarkable) proof of the area

distortion conjecture for quasiconformal maps [?]. One consequence of Astala’s result

is that if h is a K-quasiconformal map of the disk to itself, then |h′| is in weak Lp

where p = 2K/(K − 1). A function F is said to be in weak Lp if

area({z : |F (z)| > λ}) ≤ C

λp
.

In particular h′ is in every Lp space with p < 2K/(K − 1).

Let f : D → Ω be conformal and let f = g ◦ h be the factorization given by

Corollary 105. If the theorem holds with constant K then h−1 : D → D is also

K-quasiconformal and so by Astala’s theorem, (h−1)′ is in Lp(D) for every 2 ≤ p <

2K/(K − 1). Thus for p > 2 and w = u+ iv = h(x+ iy),
∫

D

|f ′(z)|2−pdxdy ≤
∫

D

|h′(z)|2−p|g(h(z))|2−pdxdy

≤ |Cf ′(0)|2−p
∫

D

|h′(z)|2−pdxdy

≤ |Cf ′(0)|2−p
∫

D

|(h−1)′(w)|pdudv,

which is finite if p < 2K/(K − 1). Thus, if Sullivan’s theorem holds for every K > 2,

then the Brennan conjecture is true. In order to improve Bertilsson’s result we would

have to prove Sullivan’s theorem with

K =
3.422

3.422− 2
≈ 2.4064,

which is much better than currently known estimates. Moreover, Marden and Markovic

constructed a domain for which the quasiconformal constant of the ι map is strictly

larger than 2, so we can’t prove Brennan’s conjecture for all domains using just this
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map. On the other hand, we don’t need to consider just the ι map: any locally

Lipschitz, 2-quasiconformal map to the disk will do. Does one always exist?



CHAPTER 8

Domes and scaling

In the last chapter we saw that the medial axis flow from ∂Ω to ∂D (where D ⊂ Ω

is some medial axis disk) gives a uniform approximation to the boundary values of the

Riemann map Ω → D. This fact was originally discovered because of the connections

between the medial axis and certain objects in 3-dimensional hyperbolic geometry

and the original proof of the uniform approximation property of the medial axis

flow was as a corollary to a theorem on Sullivan, Epstein and Marden about the

boundaries of hyperbolic 3-manifolds. In this chapter we will explain the connection,

reprove certain facts from the previous chapter from this perspective and derive a

continuation method that allows one to converts a locally convergent algorithm for

finding conformal maps into a globally convergent one.

1. The dome of a domain

So far we have presented the medial axis flow as a purely two dimensional object.

However, its connection to conformal mappings arose from observations about three

dimensional hyperbolic geometry and in order to give explicit formulas for the corre-

sponding tree-of-disks map and to prove the uniform bounds for the resulting guesses,

it is convenient to explain the connection between the medial axis and 3-dimensional

geometry. We start by recalling the definition of the dome of a planar domain.

Given a closed set E in the plane, we let C(E) denote the convex hull of E in

the hyperbolic upper half-space, R3
+ = R

3
+. This is the convex hull in R

3
+ of all the

infinite hyperbolic geodesics which have both endpoints in E (recall these are exactly

the circular arcs in R
3
+ which are orthogonal to R

2 = ∂R3
+). One really needs to take

the convex hull of the geodesics ending in E and not just the union of these geodesics;

for example, if E consists of three points, then there are three such geodesics and

these form the “boundary” of an ideal triangle whose interior is also in the convex

hull of E.

223
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The complement of C(E) is a union of hyperbolic half-spaces. There is one com-

ponent of R3
+ \C(E) for each complementary component Ω of E and this component

is the union of hemispheres whose bases are disks in Ω (also include half-planes and

disk complements if Ω is unbounded). For example, when E is the boundary of a

square, the lower and upper boundaries of C(E) are illustrated in Figure 1.

Figure 1. The lower and upper boundaries of the hyperbolic convex
hull of the boundary of a square (left and right figures respectively).
The lower boundary consists of one geodesic face (dark) and four Eu-
clidean cones (lighter). The upper boundary has five geodesic faces
(one hemisphere and four vertical). The outside of the square is a
finitely bent domain, but the inside is not.

Lemma 106. Suppose SΩ is the dome of a simply connected, hyperbolic plane

domain Ω. Then for every x ∈ SΩ there is an open hyperbolic half-space H disjoint

from SΩ so that x ∈ ∂H ∩ SΩ. For any such half-space, ∂H ∩ SΩ contains an infinite

geodesic, and its base disk (or half-plane) has boundary which hits ∂Ω in at least two

points.

Proof. Let W = C(Ωc) be the hyperbolic convex hull of Ωc, so SΩ = ∂W .

By definition, W is the intersection of all closed half-spaces which contain it, and

from this it is easy to see that any boundary point on W is on the boundary of

some closed half-space which contains W . Thus x is also on the boundary of the

complementary open half-space H (which must be disjoint from W ). The base of

H on R
2 is a half-plane or a disk and by conjugating by a Möbius transformation,

if necessary, we assume it is the unit disk D = D and that H contains the point
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z = (0, 0, 1) ∈ SD. Clearly ∂D hits ∂Ω in at least one point, for otherwise its closure

would be contained in another open disk in Ω, whose dome would be strictly higher

than SD, contradicting that z ∈ SD ∩ SΩ. In fact, ∂D must hit ∂Ω in at least two

points. For suppose it only hit at one point, say (1, 0) ∈ R
2. Then for ǫ > 0 small

enough the disk D(−2ǫ, 1+ǫ) would also be in Ω and its dome would strictly separate

z from SΩ. Thus ∂D hits ∂Ω in at least two points and the geodesic in R
3
+ between

these points lies on the ∂H ∩ SD, as desired. �

Thus each point on the dome is also on the dome of a disk in Ω whose boundary

hits ∂Ω in at least two points, i.e., the dome is the union of hemispheres corresponding

to medial axis disks.

The dome is easiest to visualize when Ω is a finite union of disks, e.g., see Figure

2. Such a domain will be called “finitely bent” because the dome consists of a finite

union of geodesic faces (each contained on a geodesic plane in R
3
+, i.e., a Euclidean

hemisphere or vertical plane) which are joined along infinite geodesics called the

bending geodesics. Such a dome is the analog of a convex, unbounded, polyhedral

surface in Euclidean space.

Figure 2. A finitely bent domain, its medial axis and its dome

When we are given a finitely bent domain Ω we shall always assume we are given

a complete list of disks in Ω whose boundaries hit ∂Ω in at least three points. Then

every face of the dome corresponds to a hemisphere that has one of these disks as

its base. This is slightly different than just giving a list of disks whose union is Ω;

in Figure 3 we show a domain which is a union of four disks Ω = D(1, 1) ∪D(i, 1) ∪
D(−1, 1)∪D(−i, 1) but which contains a fifth disk, D(0,

√
2) which also corresponds

to a face on the dome of Ω.
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Figure 3. A domain which is a union of four disks, but which has
five faces on the dome because of a “hidden” maximal disk.

The faces of the dome of a finitely bent domain form the vertices of a finite tree,

with adjacency defined by having an infinite geodesic edge in common. This induces

a tree structure on the maximal disks in the base domain: disks which hit exactly

two boundary points are interior points of edges of the tree and disks which it three

or more points are the vertices (of degree 1 or ≥ 3). A “hidden” maximal disk (i.e.,

one that corresponds to some face of the dome, but which does not share a boundary

arc with Ω) must have degree at least three in this tree.

Lemma 107. For any tree the number of vertices of degree three or greater is less

than the number of degree one vertices.

The proof is easy and left to the reader (remove a degree one vertex and use

induction). So if Ω can be written as a union of n disks in any way, there are at most

2n vertices of the medial axis.

To illustrate these ideas we show a few polygons, along with their medial axes

and their domes. The dome of a polygon is naturally divided into kinds of pieces:

(1) a hyperbolic geodesic face corresponding to a vertex of the medial axis of degree

three or more (2) a cylinder or cone corresponding to sweeping a hemisphere along a

bisector of two edges or (3) sweeping a hemisphere along the parabolic arc of a point-

edge bisector. Disks corresponding to the interiors of point-point bisector edges do

not contribute to the dome since the union of the two disks at the endpoints of this

edge contain all the disks corresponding to the interior points.
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In the dome of a convex polygon, only the first two types of pieces can occur.

These are illustrated in Figure 4. The third type of medial axis arc can occur in

non-convex domains, as illustrated in the polygonal “corner” in Figure 5.

Figure 4. The medial axis and dome of a convex region. This dome
has three geodesic faces which are shaded darker (these correspond to
vertices of the medial axis); the lighter parts of the dome are Euclidean
cones which correspond to edges of the medial axis. The dome is shown
from two different directions

The medial axis also suggests a way of approximating any domain by a finite union

of disks; simply take a finite subset of the medial axis so that the corresponding

union of medial axis disks is connected. The medial axis of such a union consists

of one vertex for each geodesic face in the dome and straight lines connecting the

vertices corresponding to adjacent faces. A polygon, its medial axis and a finitely

bent approximation are shown in Figure 6. In Figure 7 we show the domes of the

polygon and its approximation.
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Figure 5. The dome of a “corner”. The darkest shading are geodesic
faces (vertices of the medial axis); the lightest are Euclidean cones
or cylinders (edge-edge bisectors in the medial axis). The medium
shading illustrates the third type of medial axis edge that can occur:
the parabolic bisector of a point and a line.

Figure 6. A (non-simple) polygon, its medial axis and a finitely bent
approximation.

2. The Sullivan-Epstein-Marden theorem

The two main results about the dome of Ω say that (1) it is isometric to the

hyperbolic disk and (2) it is “almost isometric” to the base domain Ω. More precisely,

equip the dome with the hyperbolic path metric ρS (shortest hyperbolic length of a

path connecting two points and staying on the surface).

Theorem 108 (Thurston, [?]). Suppose Ω is a simply connected plane domain

(other than the whole plane or the complement of a circular arc) and let S be its dome.

Then (S, ρS) is isometric to the hyperbolic unit disk. We will denote the isometry by

ι : S → D.
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Figure 7. On the top left is the dome of the polygon P2 and on
the top right is the dome of the finitely bent approximation Ω2. Below
each, we have redrawn the domes, but with different sections shaded
differently. For P2, regions corresponding to different edges of the me-
dial axis colored differently. For Ω2 the dome is a union of geodesic
faces (which form the vertices of a tree) and adjacent faces are shaded
in alternating colors.

Theorem 109 (Sullivan [?], Epstein-Marden [?]). Suppose Ω is a simply con-

nected plane domain (other than than the whole plane or the complement of a circular

arc). There is a K-quasiconformal map σ : Ω → S which extends continuously to the

identity on the boundary (K is independent of Ω).

In fact, there is a biLipschitz map between Ω and its dome (each with their

hyperbolic metric; see Theorem 93), but we will only use the quasiconformal version

of the result. We place the additional restriction that Ω is not the complement of a

circular arc because in that case the convex hull of ∂Ω is a hyperbolic half-plane and
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the dome should be interpreted as two copies of this half-plane joined along its edge

with bending angle π. In order to simplify the discussion here, we simply omit this

case (with the correct interpretations the results above still hold in this case; this is

discussed in complete detail in Section 5 of [?]).

Both these theorems have their origin in the theory hyperbolic of 3-manifolds.

Such a manifold M is a quotient of the hyperbolic half-space, R
3
+, by a discrete

group G of isometries. The orbit of any point under this group accumulates only

on the boundary of the half-space and the accumulation set (which is independent

of the orbit except in trivial cases) is called the limit set Λ. The complement Ω of

Λ in the boundary of hyperbolic space is called the ordinary set. The group G acts

discontinuously on Ω and ∂∞M = Ω/G is called the “boundary at infinity” of M .

This is a Riemann surface (possibly with branch points). The manifold M contains

closed geodesics and the closed convex hull of these is called the convex core of M

and denoted C(M). The lift of the convex core to R
3
+ is the hyperbolic convex hull

of the limit set and its boundary is the dome of the ordinary set. Thus ∂C(M)

is just the quotient of this dome by the group G. Theorem 108 implies that the

boundary of C(M) is a surface of constant negative curvature, i.e., is isomorphic

to the hyperbolic disk modulo a group of isometries. Theorem 109 says that ∂∞M

and ∂C(M) are homeomorphic, indeed, are biLipschitz (and hence quasiconformal)

images of each other with respect to their hyperbolic metrics. This fact was needed

in the proof of Thurston’s hyperbolization theorem for 3-manifolds that fiber over

the circle. The proof of Theorem 108 for finitely bent domains simply consists of

observing that if we deform the dome by bending it along a bending geodesic, we

don’t change the path metric at all. Moreover, a finite number of such deformations

converts a finitely bent dome into a hemisphere, and this is obviously isomorphic to

the hyperbolic disk. More precisely, we are using the following simple lemma.

Lemma 110. Suppose two surfaces S1, S2 in R
3
+ are joined along a infinite hyper-

bolic geodesic and suppose σ is an elliptic Möbius transformation of R3
+ which fixes

this geodesic. Then a map to another surface which equals the identity on S1 and

equals σ on S2 is an isometry between the path metric on S1∪S2 and the path metric

on the image.
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Proof. This becomes obvious is one normalizes so that the geodesic in question

becomes a vertical line and σ becomes a (Euclidean) rotation around it, since it is

then clear that the length of any path is left unchanged. �

Figure 8. A dome consisting of two geodesic faces joined along an
infinite geodesic. By bending the dome along the geodesic we get a
one-parameter, isometric family of surfaces ending with a hemisphere,
which is obviously isometric to the hyperbolic disk.

Theorem 108 then follows by taking a finitely bent surface and “unbending” it

one geodesic at a time, i.e., we can map it to a hemisphere by a series of maps, each

of which is an isometry by the lemma. Since a hemisphere is isometric to the disk,

we are done. In Figure 2 we illustrate the bending along a geodesic for a dome with

two faces.

This proof gives us a geometric interpretation of the map ι : ∂Ω → ∂D. The disks

making up a finitely bent domain have a tree structure and if Ω is finitely bent then

we fix a root disk D0 and write Ω = D0 ∪j Dj \ D∗
j , where D

∗
j denotes the parent

disk of Dj. This gives Ω \D0 as a union of crescents. See Figure ??. We call these

“tangential” crescents since one edge of the crescent follows ∂Ω near each vertex (and

to differentiate them from the “normal” crescents we will introduce later).
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Each crescent in the tangential crescent decomposition has an “inner edge” (the

one in the boundary of D∗
j ) and an “outer edge” (the other one) and there is a unique

elliptic Möbius transformation which maps the outer edge to the inner one, fixing the

two vertices of the crescent (this is just the restriction to the plane of the Möbius

transformation of R3
+ which removes the bending along the corresponding bending

geodesic). The map ι : ∂Ω → ∂D is the composition of these maps along a path of

crescents which connects an arc on ∂Ω to an arc on ∂D. An alternate way to think of

this is to foliate each crescent Dj \D∗
j by circular arcs which are orthogonal to both

boundary arcs. This gives a foliation of Ω \ D0 by piecewise circular curves which

connect x ∈ ∂Ω to ι(x) ∈ ∂D. This is exactly the same as the medial axis flow for

the base domain. Thus restricted to ∂Ω = ∂S the ι map and the medial axis flow

map are identical.

Theorem 109 implies that the mapping ι : ∂Ω → ∂D has a quasiconformal ex-

tension to a map Ω → D which is K-quasiconformal with a bound K which is

independent of Ω. This is the same as Theorem ??, indeed, this is way this result

was first proved.

3. The retraction map onto the dome

We need to show that there is a quasi-isometry from the hyperbolic metric on

Ω to the hyperbolic path metric on its dome S which extends continuously to the

identity on the boundary. It turns out that there is an “obvious” map R : Ω → S;

the nearest point retraction. Recall that S is the boundary of a convex region in R
3
+.

Thus every point in its complement has a nearest point on S (just think of expanding

a hyperbolic ball around a point until the first time it hits S). This map extends

continuously to Ω: for each z ∈ Ω expand a ball in R
3
+ tangent to the boundary at

until it first hits S at a point R(z). This point is both on the tangent ball B at z

and on a hemisphere with base in Ω which contains B. Since B can only hit the

boundary of the hemisphere at one point, it can only hit S at one point, and so the

point of first contact is unique.

We claim that R : Ω → S is a quasi-isometry with constants that are independent

of Ω. We will actually show that

1

A
ρΩ(w, z)− BρS(R(z), R(w)) ≤ AρΩ(z, w),
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S

H B

Figure 9. A horoball can only touch a hemisphere at one point and
hence can touch the doem at only one point.

Figure 10. On the left we show the nearest point retraction in Eu-
clidean space: we expand a Euclidean ball around a point until it first
hits the set. If the set it convex, then this first contact point is unique.
On the right is the analogous situation for hyperbolic space. For a
point inside hyperbolic space we taking expanding hyperbolic balls un-
til they hit the desired set. The natural extension to the boundary is
to take expanding horoballs (balls tangent to the boundary).

so that the retraction map is Lipschtitz (hence contiuous). To prove the upper bound,

we claim it suffices to show that

ρΩ(z, w) ≤ ǫ ⇒ ρS(R(z), R(w)) ≤ Aǫ.(26)

If this is true, then given any pair of points we can connect them by a geodesic and

choose points z = z1, z2, . . . , zn+1 = w so that each is less than distance ǫ from the
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next. Then
n∑

k=1

ρH(R(zk), R(zk+1)) ≤ A
∑

k

ρΩ(zk, zk+1) ≤ Aρ(z, w),

and the left hand side gives an upper bound for the path distance between R(z) and

R(w) on S as ǫ→ 0. For the lower bound it also suffices to check that

ρS(R(z), R(w)) ≤ 1 ⇒ ρΩ(z, w) ≤ B.

Similarly, to prove the lower bound it suffice to prove

ρS(R(z), R(w)) ≤ 1 ⇒ ρΩ(z, w) ≤ B.(27)

If this holds and R(z) and R(w) between n and n+1 apart with respect to the

path metric on S, then we can connect R(z) and R(w) by a geodesic and divide

this path into at most n + 1 segments of length ≤. By (27), the preimage of each

segment has length ≤ B and so the distance between z and w is at most B(n+ 1) ≤
(B + 1)ρS(R(z), R(w)). Thus

1

B + 1
ρΩ(z, w)−

1

B + 1
≤ ρS(R(z), R(w)),

as desired.

We start with some easy inequalities. We normalize so that ∞ 6∈ Ω. Since W is

a union of hemispheres, its complement (the region “above” S) is an intersection of

hyperbolic half-spaces and hence is hyperbolically convex. Thus the geodesic from

any point of S to ∞ is in the complement of W , i.e., the vertical ray from any point

of S to ∞ does not hit W . Thus S is a graph.

Let z ∈ Ω and let R(z) ∈ S be its image under the nearest point retraction.

Let r be the radius of the horoball B that is tangent to R
2 at z and hits S at the

point R(z). Because ∞ 6∈ Ω and because the region above the dome is hyperbolically

convex, the vertical ray from any point of the dome to ∞ must lie above the dome.

Thus R(z) must be on the top half of B. Thus

r ≤ dist(R(z),R2) ≤ 2r.(28)

Similarly,

√
2r ≤ dist(R(z),R2) ≤ 2r.(29)
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If dist(z, ∂Omega) < r, then the vertical line from the nearest boundary point to

z must hit B, which contradicits the convesity of the dome complement. Hence

r ≤ dist(z, ∂Omega). Finally, if dist(z, ∂Ω) > 2r, then the hemisphere for the disk

centered at z with this radius separates B from S, which is impossible. Thus

r ≤ dist(z, ∂Ω) ≤ 2r.(30)

In particular,

r ≃ dist(z, ∂Ω) ≃ dist(R(z),R2) ≃ dist(R(z),R2).

Now suppose z, w ∈ Ω and ρS(z, w) ≤ 1. This means ρR3
+
(z, w) ≤ 1 as well.

Suppose dist(R(z),R2) = r and let γ be the geodesic from z to w. Each point of γ is

within distance 1 of R(z) in the path metric on S and hence also in the hyperbolic

metric on R
3
+ and hence the geodesic stays between heights r/e and er above R

2.

That means that E = R−1(γ) ⊂ Ω is a connected set so that every point x ∈ E

satisfies

dist(x, ∂Ω) ≃ dist(x,R(z)) ≃ r.

Therefore E can be covered by a connected union of Euclidean squares Q from a grid

so that

diam(Q) ≃ dist(Q, ∂Ω) ≃ dist(Q,R(z)).

However, there can only be O(1) such squares and each has uniformly bounded hy-

perbolic diameter. Thus E has uniformly bounded diameter, which is (??).

To prove (??), fix any point z ∈ Ω and a small ǫ > 0. By applying a Möbius

transformation we can assume z = 0 and R(z) = p = (0, 0, 1). This means that the

unit disk, D, is contained in Ω but ∂D hits ∂Ω. Let H be the hyperbolic half-space

(i.e., Euclidean hemisphere) with base D. Let w ∈ Ω and assume the quasi-hyperbolic

distance from w to z is ≤ ǫ. This means that |z − w| ≤ ǫ as well. Let B be the

maximal horoball in R
3
+ which is tangent to R

2 at w and which is contained in W ,

i.e., B touches S at the point R(w). Clearly R(w) ∈ V = ∂B \H. How large is V ?

V is a spherical cap whose diameter is attained along the vertical Euclidean plane

passing through 0 and w. See Figure 5 for a picture of this slice.

In this slice, H becomes the unit half-disk in the upper half-plane and B becomes

a disk of radius r tangent to R at ǫ > 0. Then ∂Hand∂B intersect at two points

a, b as labeled. Note that the perpendicular bisector of [a, b] is a diameter of B and
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r

r

r1−r

ε

θ

a

b

Figure 11. Proof that the nearest point retraction is Lipschitz.

passes through both the center of B and the origin. The arc of the unit circle between

these points has length 2θ where tan θ = ǫ/r. We can compute r by applying the

Pythagorean theorem to the shaded right triangle in Figure 5 to write

(1− r)2 + ǫ2 = r2,

which implies r = 1
2
(1− ǫ2). Thus

θ ≃ arctan(ǫ/r) ≃ ǫ/r =
2ǫ

1− ǫ2
.

Thus |a− b|/ǫ→ 4 as ǫ→ 0.

Therefore ρR3
+
(R(z), R(z)) ≤ (4+o(1))ρ̃Ω(z, w), so the retraction map is Lipschitz

with respect to the quasi-hyperbolic metric on Ω. But the quasi-hyperbolic and hy-

perbolic metrics are boundedly equivalent by the Koebe 1
4
-theorem, so the retraction

map is also Lipschitz with respect to the hyperbolic metric.

4. The gap-crescent decomposition for finitely bent domains

Now suppose Ω is a finitely bent domain. Then the dome S of Ω is a finite union

of geodesic faces. On the interior of each face the retraction map has a well defined

inverse and the images of the faces under R−1 are called the “gaps”. The inverse im-

ages of the bending geodesics are crescents which separate the gaps. These are called

“normal crescents” since their two boundary arcs are perpendicular to the two arcs of

∂Ω which meet at the common vertex. Therefore, we will call this decomposition of

Ω the “normal crescent decomposition”. Refer back to Figure ??; that picture shows
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a polygon, a finitely bent approximation, the normal crescent decomposition and the

dome. See Figure 12 for more examples of gap/crescent decompositions.

Figure 12. Normal crescent decompositions for some finitely bent
domains. Also drawn are edges triangulating the gaps. These are added
to make the bending lamination complete (see Section ??).

If a gap G corresponds to a face F ⊂ S then G ⊂ D, the disk in Ω which is the

base of the hyperplane containing the face F . We will call D the “base disk” of G

Moreover, G is the hyperbolic convex hull in D of the set where F meets ∂Ω. The

angle of a normal crescent C is the same as the angle made by the faces of the dome

which meet at the corresponding bending geodesic. C is foliated by circular arcs which

are orthogonal to both boundary arcs and each of these arcs is collapsed to single

point by R. Thus for a finitely bent domain Ω, R will never be a homeomorphism

(unless Ω is a disk).

The two vertices of each normal crescent are also the vertices of a crescent in the

tangential crescent decomposition of Ω. Moreover, corresponding crescents from the
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two decompositions have the same angle, and hence are simply images of each other

by a π/2 elliptic rotation around the two common vertices. See Figure 13. Collapsing

the two types of crescents simply gives the two different continuous extensions to the

interior of the same map on the boundary (namely ι).

Figure 13. The tangential and normal crescent decomposition for
a domain. There is a 1-to-1 correspondence between crescents in the
two pictures; corresponding crescents have the same vertices and same
angle, but are “rotated” by π/2.

The normal crescents can be defined without referring to the dome at all. When-

ever we have a tree of overlaping disks we get a crescent corresponding to two adjacent

disks by taking the hyperbolic geodesics in each disk which connect the two intesec-

tion points of the boundaries. After we remove the normal crescents, the remaining

components are the gaps, one gap associated to each disk.

Both decompositions cut Ω into a “disk” and a union of crescents. In the tangen-

tial decomposition, it is a single connected disk, but in the normal decomposition the

disk itself is broken into pieces called the gaps. The map ϕ = ι ◦ R : Ω → S → D is

Möbius on each gap and collapses every crescent to a hyperbolic geodesic in D, thus

the disk is written as a union of Möbius images of gaps. For example, see Figures 14.

The picture on the left shows a normal crescent decomposition of a square and on

the right are the ϕ images of the gaps in the disk. The images of the crescents is a

finite union of geodesics which is called the “bending lamination” of Ω. If we record

the angle of each crescent and assign it to the corresponding geodesic in the bending

lamination, then we get a “measured lamination”, and this data is enough to recover

Ω, up to a Möbius image. We will discuss laminations further in Section ??.
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Figure 14. A normal crescent decomposition of a square and the
corresponding bending lamination in the disk. We can recover the
decomposition from the lamination by “thickening” each geodesics to
a crescent of the correct angle.

5. Angle scaling

We can recover the normal crescent decomposition from the bending lamination

by “thickening” each bending geodesic to a crescent of the correct angle, and moving

the gaps by the corresponding elliptic transformations. If we do this continuously,

we obtain a family of domains connecting the disk to Ω. For 0 ≤ t ≤ 1, let Ωt be the

domain obtained by replacing a crescent of angle α in the normal decomposition by

a crescent or angle tα. (Note we would get the same domain if we replaced crescents

in the tangential decomposition). See Figures 15 to 18 for some examples of these

1-parameter families. In general, the intermediate domains need not be planar, but

we can think of them as Riemann surfaces which are constructed by gluing together

crescents and gaps of given sizes along their edges. Figure 18 shows an example where

the intermediate domains are not planar (one sees some small overlap for parameter

value t = .99; bigger overlaps could be produced by other examples).

Given a pair of domains Ωs,Ωt with 0 ≤ s < t ≤ 1, let ιs,t : ∂Ωt → ∂Ωs be the

obvious boundary map obtained multiplying the angle of each crescent by s/t. We

will extend this boundary map to the interiors by writing each crescent C in Ωt of

angle α as a union of crescents C1, of angle αs/t and C2, of angle α(1 − s/t). On

C1 we collapse each leaf of the E-foliation to a point (hence C1 is maps to a circular

arc) and we let our map be Möbius on C2. By continuity, this Möbius transformation
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Figure 15. The one parameter family connecting the disk to a
finitely bent approximation of the square. In each picture the angles
have been multiplied by t = 0, .2, .4, .6, .8, 1

Figure 16. An approximate logarithmic spiral with t =
0, .2, .4, .6, .8, 1. Logarithmic spirals were used by Epstein and Markovic
in [?] to disprove Thurston’s K = 2 conjecture. The showed that (in a
precise sense) certain spirals have too much gray.
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Figure 17. The domain from Figure 13 with t = 0, .2, .4, .6, .8, 1.

Figure 18. An example where intermediate domains need not
be planar. The pictures correspond to multiplying the angles by
t = 0, .4, .8, .95, .99, 1. Note that the parameter must be very close
to 1 before we see the longer corridors clearly.
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would have to agree with the map on the gap that is adjacent to C2. We will let

ϕs,t : Ωt → Ωs denote this map. Let ρs = ρΩs
denote the hyperbolic metric on Ωs.

Suppose N is a large integer and choose points t0 = 0, t1 = 1
N
, . . . , tN = 1. Let

Ωk = Ωtk for k = 0, . . . , N . Let ϕk : Ωk+1 → Ωk be defined by ϕk = ϕ k
n
, k+1

n
.

6. Angle scaling is QC continuous

Given a pair of domains Ωs,Ωt with 0 ≤ s < t ≤ 1, let ιs,t : ∂Ωt → ∂Ωs be the

obvious boundary map obtained multiplying the angle of each crescent by s/t. We

will extend this boundary map to the interiors by writing each crescent C in Ωt of

angle α as a union of crescents C1, of angle αs/t and C2, of angle α(1 − s/t). On

C1 we collapse each leaf of the E-foliation to a point (hence C1 is maps to a circular

arc) and we let our map be Möbius on C2. By continuity, this Möbius transformation

would have to agree with the map on the gap that is adjacent to C2. We will let

ϕs,t : Ωt → Ωs denote this map. Let ρs = ρΩs
denote the hyperbolic metric on Ωs.

We claim that angle scaling is continuous with respect to the quasiconformal

distance. More precisely, angle scaling defines a map between the boundaries of Ωs

and Ωt and we claim that this map has a 1 +O(|s− t|) quasiconformal extension to

the interiors. As before it will be simplier to show it has a 1+o(|s−t|) quasi-isometric

extension to the interiors.

Lemma 111. Suppose {tauk} is a collection of elliptic transformations acting on

the hyperbolic ball B, with τk a rotation of angle θk around points {ak, bk}. Assume

that the Euclidean distance |ak − bk| ≥ 1 for each k. Then no point on ∂B is moved

more than Euclidean distance O(
∑

k |θk| by τ1 ◦ · · · ◦ τn.

Proof. This is obvious since the condition on the fixed points implies each indi-

vidual map moves points by at most O(|θk|). �

Now suppose z, w ∈ Ωs and normalize both Ωs and Ωt by Möbius transformations

so that 0 = z = ϕst(z) and dist(0, ∂Ωs) = dist(0,Ωt) = 1. Then ϕst acts on w as a

composition of elliptic transformations {τk} (one for each normal crescent separating

w and 0) whose fixed points are well separated. Moreover, elliptic rotates by |s− t|αk
and

∑
k αk ≤ e3s by Lemma 5 if 0 and w are within hyperbolic distance s. Thus ϕst

moves w only Eucliean distance O(|s − t|), which by our normalization, is also only
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hyperbolic distance O(|s− t)). Thus

ρ(z, w) ≤ 1 ⇒ ρ(ϕst(z), ϕst(w)) ≤ ρ(z, w) +O(|s− t|).

For general points (joining them by geodesics broken into unit length segments) this

implies

ρ(ϕst(z), ϕst(w)) ≤ ρ(z, w)(1 +O(|s− t|)) +O(|s− t|).
Note, however, that we have never specified whether s < t or t < s, so this estimate

applies equally well to the inverse function ϕts, so

ρ(ϕst(z), ϕst(w)) ≥
ρ(z, w)

1 +O(|s− t|) −O(|s− t|).

This gives both sides in the definition of quasi-isometry, so we are done.

As noted before, the retraction map R : Ω → S is a quasi-isometry. Thus ϕ =

ι ◦ R : Ω → D is also a quasi-isometry between the hyperbolic metrics. The same is

true for the maps ϕs,t for any 0 ≤ s < t ≤ 1, with constant bounded by O(|s − t|).
We will prove this next, together with a variation we will use later to estimate the

norm of a ǫ-representation when composed with ϕ−1
s,t . First we need an estimate on

the bending lamination.

Consider the bending lamination Γ associated to a finitely bent domain Ω. Sup-

pose a hyperbolic s-ball hits geodesics in Γ with angles α1, . . . , αm. We want to show

that there is an upper bound
∑

j αj ≤ B(s) which only depends on s. See [?], [?]

for some variations of this idea. Estimates of B are also closely tied to results of

Bridgeman [?], [?] on bending of surfaces in hyperbolic spaces. Here we shall give a

simple conceptual proof without an explicit estimate.

Lemma 112. There is a C <∞ so that B(s) ≤ Ce3s.

Proof. Suppose Ω is normalized so ∞ 6∈ Ω. The normalization implies that if γ

is a bending geodesic in R
3
+ which hits the plane at 1 and −1, then the corresponding

crescent is in the unit disk. Moreover, an easy estimate shows that a crescent with

vertices ±1 and angle α has area ≥ cα for some fixed c > 0.

If γ̃ is a bending geodesic with angle β that passes within hyperbolic distance s

of (0, 0, 1) then the “highest” point of γ̃ has Euclidean height at least e−s above the

plane R
2. Thus its two endpoints on the plane are at least 2 · e−s apart. Moreover

at least one endpoint must be contained in the disk of diameter es around the origin
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(if not then γ̃ lies outside the hemisphere with this disk as its base which means the

hyperbolic distance to (1, 0, 0) is ≥ s).

Thus the part of the crescent corresponding to γ̃ inside the ballB(0, es+1) has area

at least ce−sβ. Consider the set of all bending geodesics that come within hyperbolic

distance s of the point (0, 0, 1) ∈ R
3
+ and let {αn} be an enumeration of the bending

angles. Since the crescents are disjoint we deduce
∑

n αn ≤ 1
c
πes(es + 1)2 ≤ Ce3s, as

desired. (Note that this argument is not sharp since the crescents can have small area

only when then are close to the origin; also note that we must have B(2s) ≤ 2B(s)

which implies at most linear growth for large s.) �

The following simple lemma quantifies the fact that a elliptic Möbius transforma-

tion with small rotation angle is close to the identity.

Lemma 113. Suppose σ is an elliptic Möbius transformation with fixed points a, b

and rotation angle θ. If r = |z − (a+ b)/2| ≤ 1
8
|b− a|/θ and |θ| ≤ 1

4
, then we have

|z − σ(z)| ≤ C(1 + r2)
|θ|

|b− a| .

Proof. This is an explicit computation. We may assume a = 1, b = −1 in which

case σ has the form σ(z) = τ−1(λτ(z)) where λ = eiθ and τ(z) = (z − 1)/(z + 1).

Doing some arithmetic, and using |1− λ| ≤ |θ|, we get

|σ(z)− z| = |(1− λ)− (1− λ)z2

(1 + λ) + (1− λ)z
| ≤ |θ| |1− z2|

1− |θ| − |θ||z| ≤ 4|θ|(1 + |z|2),

if |θ| ≤ 1
4
and |z| ≤ 1

4|θ| . �

The following is the main result of this section.

Lemma 114. Suppose r > 0 is given. There is an ǫ > 0, depending only on r, so

that if 0 ≤ s < t ≤ 1 and |s− t| ≤ ǫ then the following holds. Suppose G1 and G2 are

gaps in the normal crescent decomposition of the finitely bent domain Ωs such that

ρS(R(G1), R(G2)) ≤ r. Suppose τj are Möbius transformations so that ϕ−1
s,t |Gj

= τj

for j = 1, 2. Then

ρt(τ1(z), τ2(z)) ≤ Cr|t− s|,

for every z ∈ Ωs with ρs(z,G1) ≤ r.
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Proof. The statement is invariant under renormalizing by Möbius transforma-

tions so we may assume that G1 has base disk D, that z1 = 0 ∈ G1 is within 2r of

G2, and that τ1 is the identity.

Then τ2 is a composition of the elliptic transformations {σj} that correspond to

the normal crescents {Cj} that separate G1 and G2. By Lemma 112, the measure of

the bending geodesics separating G1 and G2 is at most B(r).

Since ρS(Cj, 0) ≤ r for all j, Cj has diameter ≥ e−r and one vertex is contained

within D(0, er) by the proof of Lemma 112. By Lemma 113 this means that σj moves

points in D(0, C) at most C|θj| with C depending only on r, assuming θj is small

enough (depending only on r). Thus

|τ2(z)− z| ≤ Cr|s− t|
∑

j

|θj| = O(|s− t|),(31)

for |z| ≤ C, assuming |s− t| is small enough, depending only on r.

If ρt(0, z) ≤ r, then |z| ≤ Cr and dist(z, ∂Ωs) ≥ Cr > 0 with estimates which only

depend on r (see Lemma ??, Appendix D). Thus for |s− t| small enough, ρt(z, 0) ≤ r

and |z − w| ≤ ǫ imply ρt(z, w) ≤ Crǫ. Hence for a given r we can choose |s − t| so
small that (31) implies ρt(τ2(z), z) ≤ O(|s− t|), (with constant depending on r). �

Lemma 115. ϕs,t is a quasi-isometry with constant O(|s− t|).

This follows immediately from the following technical result which will be proven

in Appendix ??. It also follows from a careful reading of [?] which gives an explicit

construction of a quasiconformal map from D to a finitely bent domain Ω with bound-

ary values ϕ−1. The method can be adapted to give an explicit map Ωs → Ωt which

is quasiconformal with constant O(|s− t|).

Theorem 116. Suppose Ω0,Ω1 are simply connected and ϕ : Ω0 → Ω1 has the

following property: there is a 0 < C < ∞ so that given any hyperbolic C-ball B

in Ω0, there is a Möbius transformation σ so that ρΩ0(z, σ(ϕ(z)) ≤ ǫ for every z ∈
B. Then there is a hyperbolic (1 + O(ǫ))-biLipschitz map ψ : Ω0 → Ω1 so that

supz∈Ω0
ρΩ1(ϕ(z), ψ(z)) ≤ O(ǫ). In particular, ϕ is a quasi-isometry between the

hyperbolic metrics with constant O(ǫ).
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7. Angle scaling and Davis’ method

Suppose we have an iterative method of computing a conformal map that works if

we start with a good enough guess. For example, suppose that given a a guess w for

the Schwarz-Christoffel parameters z, we have an algorithm that will converge to z

assuming dQC(w, z) < ǫ0 for some fixed ǫ0. How can we turn this into a method that

always finds z? In Chapter 5 we saw that there are simple methods that give initial

guesses that are guareented to be within some universal distance K of the correct

answer, but this K may be larger than ǫ0. How do we bridge the gap?

In this chapter, we will show that any finitely bent domain Ω can be associated

to a finite chain of domains Ω0,Ω1, . . . ,ΩN so that

(1) Ω0 = D,

(2) ΩN = Ω,

(3) N = O(1/ǫ0),

(4) If zn are the conformal preimages of the vertices of Ωn, then dQC(zn, zn+1) <
1
2
ǫ0.

We can easily find the Riemann map onto Ω0 by taking the identity. This map is

then within QC-distance ǫ0 of the map onto Ω1, so is a suitable starting point from

which to iterate to the map onto Ω1. In general, if we know the conformal map onto

Ωk to within QC -distance ǫ2, then it is also within ǫ0 of being a map onto Ωk+1, so we

can apply our iterative method until we approximate a map onto Ωk+1 to within ǫ0/2.

Finally, when we get within ǫ0/2 of the for ΩN = Ω we simply apply the iterative

method until we get the desired accuaracy.



CHAPTER 9

Linear methods

In this chapter we will consider some methods for computing conformal maps that

require us to solve a linear system Ax = b. The first is Symm’s method, which is

based on the fact that finding the conformal map is equivalent to solving the Dirichlet

problem. The next is a remmarkable formula of Kerzman and Stein which gives a

formular for the Riemann map from Ω to the disk in terms of the Szegö kernel, a

function that itself can be computed from the Cauchy kernel by inverting an explicit

linear operator.

We will then give a very brief introduction to the vast field of of numerical linear

algebra: how can we solve the necessary linear systems Ax = b? Naive methods are

O(n2), but iterative methods which require only repeated applications of the matrix

A offer two possible improvements. First, although such methods may require n

iterations to reach an “exact” solution, they often reach an “acceptable” solution

(e.g., within machine accuracy) much sooner. The conjugate gradient method is such

a method for real symmetric matrices. Second, whereas the application of a general

n×n matrix A to an n-vector x takes time O(n2), the matrices that arise in practice

are highly structured and Ax can sometimes be computed approximately in time

O(n) or O(n log n) using the fast multipole method of Greengard and Rokhlin.

1. A linear algebra glossary

Here we review some general definitions and results that we will need in our

discussion of linear methods. In a later section we will discuss a few specific techniques

to solve linear systems more carefully.

If we have a n × m matrix A = (ajk) (n rows and m columns), and x is a m-

dimensional vector then Ax is the n dimensional vector whose jth component is∑m
k=1 ajkxj. Entries may either be real or complex. The usual dot product between

vectors of equal length will be denoted 〈v, w〉 = ∑
k vkwk.

247
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Normed space: A norm on a vector space V is a function from V to the non-

negative reals so that

(1) ‖x‖ ≥ 0 with equality iff x = 0.

(2) ‖λx‖ = |λ|‖x‖. item ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A normed vector space is a Banach space if it is also complete, i.e., every Cauchy

sequence converges.

Inner product: An inner product on a vector space V is a function from V ×V

into the scalars so that

(1) 〈x, y〉 = 〈y, x〉.
(2) 〈x+ y, x〉 = 〈x, z〉+ 〈y, z〉.
(3) 〈λx, y〉 = λ〈x, y〉.
(4) 〈x, x〉 ≥ 0 with equality iff x = 0.

An inner product defines a norm by ‖x‖ = 〈x, x〉. If V is complete with this norm,

then it is called a Hilbert space.

Annihilator: Given a setM ⊂ H, the annihilator ofM isM ⊥= {x : 〈x, y〉 for all y ∈
M}.

%item [Kernel] kernel: The kernel of a linear map T is T−1(0).

Transpose: The tranpose of A = (ajk) is A
T = (akj) (i.e., reflect elements over

the main diagonal. The conjugate transpose is A∗ = (akj).

Adjoint: Most generally a linear map A : X → Y between normed vector

spaces, the adjoint operator A∗ maps Y ∗, the dual of Y , to X∗, the dual of X and

is defined by 〈x,A∗y∗, 〉 = 〈Ax, y∗〉. If H is a Hilbert space, then there is a cannoical

identitfication between H and its dual (the element y is identified with the linear

funtional x → 〈x, y〉). So for a operator T : H → H we may consider the adjoint T ∗

as also mapping H to H. This adjoint has the properties

(1) ‖T ∗‖ = ‖T‖.
(2) (T + S)∗ = T ∗ + S∗

(3) (λT )∗ = λ̄T ∗

(4) (ST )∗ = T ∗S∗

(5) T ∗∗ = T .

Self-Adjoint: The real matrix A is called self-adjoint if A = A∗.
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Spectrum: For a general operator A on a Hilbert space, the spectrum is the set

of complex number so that either I − λA is not onto or has non-trivial kernel. In

the latter case we say λ is an eigen value of A. For finite dimensional spaces the two

conditions are equivalent, i.e., the spectrum is the set of eigenvalues.

Normal: An operator is normal if AA∗ = A∗A. The following facts hold:

(1) T is normal iff ‖Tx‖ = ‖T ∗x‖ for all x.

(2) If T is any operator then T ∗T is normal.

(3) If T is normal then N (T ) = N (T ∗) = R(T )⊥.

(4) If T is normal and Tx = λx then T ∗x = λ̄x.

(5) If T is normal the eigenspace of the distinct eigenvalues are orthogonal.

(6) A normal operator is self-adjoint iff its spectrum lies on the real axis.

(7) A normal operator is unitary iff its spectrum lies on the unit circle.

(8) If T is normal, ‖T‖ = sup‖x‖≤1〈Tx, x〉.
The spectral theorem: For a general Hilbert space, the spectral theorem says

that a normal operator can be written as a integral over the spectrum of an operator

valued measure. This requires some specialized definitions to state exactly (see e.g.

Chapter 12 of Rudin’s book [?]), but the finite dimensional case is easy to state: if

T is a normal operator on a n dimensional space then we can choose n orthogonal

eigenvectors {vk} with eigenvalues {λk} so that

Tx =
n∑

k=1

λk〈x, vk〉vk.

If U is the unitary operator defined by mapping the standard basis {ek} to {vk}, then
U−1TU is the diagonal matrix with entries {λk}.

Unitary: T is unitary if T ∗T = TT ∗. This occurs iff T is onto and either

〈Ux, Uy〉 = 〈x, y〉 for all x, y or ‖Ux‖ = ‖x‖ for all x.

Projection: An operator is a projection if T 2 = T . If T is a projection, then it

is normal iff it is self-adjoint iff 〈Tx, x〉 = ‖Tx|2 for all x iff R(T ) = N (T )⊥.

Upper triangular: Just what you think, A = (ajk) with ajk = 0 if j > k.

Hessenberg: A is Hessenberg if it is almost upper triangular, i.e., A = (ajk)

with ajk = 0 if j > k + 1.

Gaussian elimination: This is the standard direct method for making a matrix

upper triangular. Start with the first row. If the first column is all zeros do nothing.
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Otherwise, there is a non-zero entry. If the top entry is zero, (i.e., a11 = 0) then swap

the first rows with some row the starts with a non-zero entry, otherwise leave the first

row alone. Then multiply the first row by a21/a11 and subtract it from the second

row, creating a 0 in the 2, 1 position. Then subtract a31/a11 times the first row from

the third row, making its leading elements zero as well. Proceeding in this way we

can make the first column all zeros except possibly for the a11 position. Now repeat

this procedure using the second column and all but the first rows. Repeating the

procedure on smaller blocks of the matrix leads to an upper diagonal matrix. Since

all the operations are linear, this means that there is a matrix Q so that QA = T is

upper triangular.

Positive operator: T is a positive operator on a Hilbert space if 〈Tx, x〉 ≥ 0 for

every x ∈ H. If T is positive then there is a unique positive operator S so that s2 = T .

If T is any bounded operator, T ∗T is positive (since 〈T ∗Tx, x〉 = 〈Tx, Tx〉 ≥ 0) and

its square root is the only positive operator that satisfies ‖Px‖ = ‖Tx‖ for all x. Any

invertible T can be written as T = UP where U is unitary and P is positive (this is

the polar decomposition of T ). If, in addition, T is normal then U and P commute

with each other.

Singular values: If A is a n× n matrix and A∗ is its conjugate transpose, then

A∗A is normal, so has n eigenvalues, and the singular values of A are the square roots

of these eigenvalues. Any matrix A can be written A = UDV where U, V are unitary

and D is diagonal with the singular values of A as its entries.

Compact operator: An operator T : X → Y between two normed vector spaces

is called compact of the image of the open unit ball has compact closure. If T is a

normal operator from a Hilbert space to itself, then it is compact iff the spectrum has

no limit point except zero and the eigenspace of every non-zero eigenvalue is finite

dimensional. An important example of a compact operator on L2(T) is convolution

with a smooth kernel.

Orthogonal: Q is orthogonal if QTQ = I. This means the columns of Q form

an orthonormal basis.

QR decomposition: If A is an m× n matrix then we can write A = QR where

Q is a m×m orthogonal matrix and R is m× n upper triangular matrix. If m > n
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this means the bottom m−n rows of R will be all zeros. The QR decomposition can

be computed uysing Gramm-Schmitt, Householde reflections or Givens rotations.

Gram-Schmidt: Given a list of vectors {ak} this produces a list of orthonormal

vectors {qk} which span the same subspaces. The vector qk is calculated by taking ak

and subtracting off its projections onto the subspaces corresponding to the perviously

produced vectors, i.e., we write

b1 = a1/‖a1‖
q1 = b1/‖b1‖
b2 = a2 − 〈a2q1〉q1
q2 = b2/‖b2‖

...

bn = an − 〈anq1〉q1 · · · − 〈anqn−1〉qn−1

qn = bn/‖bn‖

which we can rewrite as

a1 = q1‖b1‖
a2 = 〈a2q1〉q1 + q2‖b2‖

...

an = 〈anq1〉q1 + · · ·+ 〈anqn−1〉qn−1‖bn−1‖

In matrix terms this system is A = QR where ak is the kth column of A, qk is the kth

column of Q and R is upper triangular. In actual computations, the vectors produced

may not be orthogonal due to rounding errors. These can be lessened if, instead of

writing,

bk = ak − 〈akq1〉q1 · · · − 〈akqk−1〉qk−1,
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we write

b1k = ak − 〈akq1〉q1
b2k = b1k − 〈akq2〉q2

...

bk = bk−1
k = bk−2

k − 〈akqk−1〉qk−1.

In exact arithmetic this gives the same result, but gives smaller errors in finite pre-

cision.

Householder reflections: These are another way to produce the QR decom-

position. Let e1 be the column vector starting with 1 and followed by all zeros. Let

x be the first column vector of A and let v be the unit vector in directionx − ‖x‖e1
and define the matrix Q1 = I − 2vvT . Then Q1v = v − 2vvTv = v − 2v = −v and

Q1w = w − vvTw = w for any vector orthogonal to v. Thus Q1 defines a reflection

through the hyperplane perpendicular to v. Also, Q1x = ‖x‖e1, so Q1A has first

column which is zeros except for the top entry. Applying the same procedure to the

submatrix of Q1A obtained by omitting the first row and column, we can define a

matrix Q2 so Q2Q1A is upper triangular in the first two columns. After n steps we

have QA = Qn · · ·Q2Q1A = R is upper triangular. Moreover, Q is orthogonal since

it is the product of reflections.

Givens rotations: Yet another way to produce the QR decomposition by con-

verting individual elements under the diagonal to zero. For example, suppose we

want to make the bottom element of the first column of A a zero. We think of the

bottom two elements of this column, x = a1,n−1, y = a1,n as representing the point

(x, y) in the plane and we want to rotate this point onto a the point r =
√
x2 + y2

on the real line. The 2 matrix that does this is

Rθ =

(
cos θ sin θ
− sin θ cos θ

)

where tan θ = y/x. So if we multiply A by the n× n matrix

Q =

(
In−2 0
0 Rθ

)
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we get r, 0 in the bottom two positions of the first column of QA. In a similar way

we can convert other elements to zero.

Least squares: A least squares problem is to choose a vector x which minimizes

the norm ‖Ax − y‖, given a m × n matrix A and an n vector Y . Given the QR

decomposition of A this can be solved as follows. Since Q is orthogonal,

‖Ax− y‖ = ‖QRx− y‖ = ‖Rx−QTy‖.

If R were invertible we then take x = R−1QTy, which makes the norm 0 (an obviious

minimum); since R is upper triangular this is easy to compute. If R is not invertible

or not square, then it has k < n non-zero rows. The minimal norm is attained by

projecting y orthogonally onto span of first k columns of R. Let yk be the first k

coordinates of y and Rk the upper left k×k submatrix of R and let x solve Rkx = yk.

Extend x to an n vector by adding zeros in positions k + 1 to n.

2. Iterative metods for linear systems

We will see later that approximating the conformal map from Ω to the disk could

be reduced to solving a linear equation Ax = y. It is very tempting to simply say “now

apply A−1 to both sides and we arrive at the desired solution x = A−1y.” However,

it is not quite this simple. Numerical linear algebra is devoted to describing how to

find x in a reasonable amount of time and with reasonable accuracy. This is a vast

area with numerous techniques adapted to various situations. We shall merely skim

its surface by describing a couple of algorithms which are useful for the linear systems

described earlier. Our treatment closely follows the book [?] of Bau and Trefethen.

The reader is strongly encouraged to consult it directly.

Roughly speaking, given a linear system Ax = y to solve, we can apply either

direct or iterative methods. Direct methods include things like Gaussian elimination

where we convert A into an upper triangular matrix by subtracting appropriate multi-

plies of each row from all the rows below it. This is solve the system exactly, but takes

O(n3) operations to solve an n × n system and we don’t even get an approximate

answer until we are completely finished. Moreover, the phrase “solves the system

exactly” must be treated suspiciously if the method is implemented on a computer

with finite precision; in the presence of round-off errors no method is exact. There

are other “exact methods” that will the O(n3) bound; Strassen discovered a direct
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algorithm in 1969 that reduces the exponent 3 to log2 7 ≈ 2.81 and Coppersmith and

Winograd reduced this further to ≈ 2.376. However, almost nothing is known about

the numerical stability of these methods and the improvement in the exponents is

not large enough to have had a dramatic impact on practical computing. What has

had a dramatic impact are iterative methods.

An iterative method for solving an n× n system Ax = y consists of an algorithm

that produces a sequence of vectors {xk} which converge to x (in the methods we

consider, we get the exact answer xn = x after n steps) and which only involve

applying A to various vectors. This offers two possible improvements over direct

methods. First, if the sequence of approximate solutions converges to the actual

solution fast enough, we may only have to apply a small number of iterations before

we reach an acceptable solution. For example, if ‖xk − x‖ decays exponentially,

then in O(1) iterations we will have computed x to within machine precision. The

second potential savings is that we only use the matrix A in order to apply it to

a vector. For a general n × n matrix this takes O(n2) operations. However, the

matrices that arise in practice are often highly stuctured, and we saw in Section 5

that some stuctured matrices could be applied exactly to vectors in time O(n log n).

If we have certain structured matrices and require, not an exact answer, but only

some degree of accuracy (say machine precision), then we can sometimes apply the

matrix to a vector in time O(n) (with a constant depending on the desired accuracy).

If both senarios hold then we can hope to solve the system with small error in time

only O(n). When n is in the thousands, this is a significant improvement over O(n3)

(even if the multiplicative constant is fairly large).

In this section we will discuss the first improvement: iterative methods that may

converge quickly to the desired answer. In the next section we will discuss a method

of applying certain analytically defined matrices to vector in time O(n): the fast

multipole method of Greengard and Rohklin.

Consider the m-dimensional subspace Km generated by Ay,A2y, . . . Amy, called

the Krylov subspace. The two iterative methods we will describe choose the “best”

approximate solution to AX = y from this space, the main difference between them

being how we define best. In the conjugate residual method we seek xm ∈ Km which
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minimizes

‖Axn − y‖2,

and in the conjugate gradient method (which only works if A is self-adjoint and

positive definite) we seek to minimize

‖x− xm‖A =
√
〈(x− xm), A(x− xm),

where x denotes the true solution. (Since we don’t know x ahead of time, we will

have to explain how we can minimize a function we can’t compute, but it turns out

the same xm minimizes another function we can compute).

We start with the more general conjugate residual method, a.k.a. GMRES for

“generalized minimal residuals”. This is really an iteration within an iteration. The

outer iteration finds an orthonormal basis for the Krylov space and the inner loop

finds the optimal solution within that space with the help of the basis.

Let Kn be the space spanned by the n vectors y, Ay, . . . An−1y,

AKn = [Ab|A2b| . . . |Anb].

We want to find a linear combination xn = Knc of these column vectors which

minimizes the distance to y, i.e., find a column n vector to minimize ‖xn − y‖ =

‖AKnc − y‖. We will find an orthonormal basis {qn} for Kn and then project y

orthogonally onto each basis direction. Since {qn} also span Kn, the vector xn can

be written as a linear combination of these vectors, i.e.,we want to find xn = Qnd,

(where the columns of Qn are the {qn}) for some column vector d which minimizes

‖Qnd− y‖.
Both vectors inside the norm are in the Krylov space Kn+1 and hence in the span

of the columns of Qn+1. The conjugate transpose, Q
∗
n+1 has rows that are orthogonal

vectors. Thus Q∗
n+1v has the same norm as v. Thus applying Q∗

n+1 to Qnd− y says

we are trying to choose d to minimize where Hn = Q∗
n+1AQn is a Hessenberg matrix.

This means that it almost upper triangular; we have hjk = 0 if j > k + 1. This

happens because A maps qk into the span of q1, . . . qk+1 and hence Aqk is orthogonal

to qj for all j > k + 1, which means the corresponding entries of Hn are zero. Also

note, that by construction, Q∗
n+1y = ‖y‖e1 where e1 is the column vector with a 1 at

the top and all 0’s elsewhere. Thus we seek to minimze ‖Hnd− ‖y‖e1‖.
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To find the {qk} we start by setting q1 = y/‖y‖. Then for each k = 1, 2, . . . , let

v = Aqk. For a fixed k, and j = 1, . . . , k, set v = v−qj〈qk, v〉 and finally qn+1 = v/‖v‖.
This is just Gram-Schmit applies to Aqk to make it othogonal to the previous basis

vectors. If we reach a vector where ‖v‖ = 0, the last step is impossible, but in this

case it means that v was not linearly independent of the previous basis elements and

the exact solution of the linear system Ax = y was already in the span of the previous

basis elements (and so we already found it).

After we have found each qk we can find the vector d that minimizes ‖Hnd−‖y‖e1‖.
This is a least squares problem that can be solved by theQR factorization as described

in Section 1.

How many iterations of GMRES are needed? At each stage we are minimizing

the norm of ‖rn‖ = ‖Axn − y‖ over a nested, increasing set of spaces, so these

norms decrease monotonically. Moreover, xn can be written as a linear combination

of powers of A applied to y, i.e.,

xn = qn(A)y,

so the residual can be written

rn = y − Axn = (I − Aqn(A))y = p(A)y,

where pn has contant term 1. Thus

‖rn‖ = ‖pn(A)b‖ ≤ ‖pn(A)‖‖b‖,
Thus we expect good behavior when ‖pn(A)‖ goes to zero quickly.

If A is diagonalizable, say A = V DV −1 where D is diagonal and V is invertible,

then

‖p(A)‖ = ‖V ‖‖p(D)‖‖V −1‖.
The middle term is equal to the maximum of |pn(z)| over the entries of D (i.e.,

the eigenvalues of A) and the product of the two other terms is, by definition, the

condition number κ(V ) of V .

If A is a normal matrix, i.e., it commutes with its conjugate transpose, then the

spectral theorem says that we can take V to be unitary. This means its condition

number is 1, and the behavior of GMRES depends only on the “distribution” of the

eigenvalues of A. Let Λ be the set of eigenvalues. GMRES will behave well if there

are kth degree polynomials that are 1 at 0 but small on Λ. This happens if Λ is
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clustered around a non-zero point. For example, if Λ ⊂ D(a, r) then the polynomial

pk(z) = ((z−a)/|a|)k satisfies pk(0) = 1 and supΛ |pk| ≤ (r/|a|)k. On the other hand,

if Λ consists of the nth roots of unity then any polynomial of degree k < n which is

1 at the origin must be ≥ ǫ ≃ k−1/2 at at least one point of Λ. (If p(z) =
∑

j ajzj

has modulus ≤ ǫ at every root of unity then the discrete Fourier transform implies

‖aj‖2 ≤ ǫ. Thus |p′(z)| ≤ ∑
j |aj|j ≤ ‖{aj‖2k3/2 = O(ǫk3/2). The separation between

kth roots of unity is O(1/k) so this means that the maximum of p on the unit circle

is at most ǫ + O(ǫk1/2). Since this polynomial is 1 at the origin, this violates the

maximum prinicple if ǫ << k−1/2).

If the matrix A is not normal we can try to solve the system A∗Ax = A∗y, since

A∗A is always normal (indeed, (A∗A)∗ = A∗A∗∗ = A∗A). In general, the eigenvalues

of A∗A are the squares of the singular values of A (note that the eigenvalues of A

do not influence the convergence in this problem), so at first glance it seems that

this system might not be as good to work with. However, this need not be the case.

An exteme example is given by the matrix A which cyclicly permutes the n basis

elements,

A =




0 −1 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

1 0 0 . . . 0




The eigenvalues of A are the nth roots of unity and GMRES will take the full n steps

to find any better solution to Ax = e1 than the zero vector. However A∗A is the

identity, which can be solved trivially.

The second iterative method we will discuss is the well known conjugate gradient

method. Our discussion here closely follows the presentation in [?]. There are varia-

tions for other types of matrices, but we will only discuss the simpliest version which

deals with positive definite matrices A. For such a matrix

‖x‖A = 〈x,Ax〉,

definies a norm and the conjugate gradient method seeks the vector xn ∈ Kn which

minimizes ‖en‖A where en = x∗ − xn is the difference between xn and the actual

solution of the system Ax = y. How can we compute this without knowing the
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solution x∗? The trick is to consider the function

ϕ(x) =
1

2
xTAx− xT b.

Then using the self-adjointness,

‖en‖A = (x∗ − xn)
T (Ax∗ − Axn)

= xT∗Ax∗ − xTnAx∗ − xT∗Axn + xTnAxn

= xT∗Ax∗ − 2xTnAx∗ + xTnAxn

= xT∗ b− 2xTnb+ xTnAxn

= 2ϕ(xn) + xT∗ b,

So minimzing ϕ is the same as minimizing ‖x∗ − xn‖A.
The method for doing this, due to Hestenes and Stiefel [] is surprisingly simple.

Start by setting

x0 = 0, r0 = y, p0 = r0,(32)

and for each n = 1, 2, . . . , set

αn = (rTn−1rn−1)/(p
T
n−1Apn−1) =

‖rn‖
‖pn−1‖A

(33)

xn = xn−1 + αnpn−1(34)

rn = rn−1 − αnApn−1(35)

βn = (rTn rn)/(r
T
n−1rn−1) =

‖rn‖
‖rn−1‖

(36)

pn = rn + βnpn−1.(37)

To show that this has the claimed optimality, we need to verify two orthogonality

properties:

rTn rj = 0, j < n(38)

pTnApj, j < n(39)

We first claim that if rn 6= 0 , then the Krylov subspace Kn which, by definition, is

spanned by the vectors

y, Ay, . . . , An−1y,
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is also spanned by each of the following sets:

x1, x2, . . . , xn,

r0, r1, . . . rn−1,

p0, p1, . . . pn−1.

Let Xn, Rn, Pn be the spaces spanned by these vectors respectively. Then X1 = R1 =

P + 1 = Kn is clear from (32). Assuming it is true for j < n, we note that (??)

implies Xn ⊂ Pn, (37) implies Pn ⊂ Rn, (?? implies Rn ⊂ Kn. If rn−1 6= 0, then xn

is linearly independent of Xn−1 and hence has dimension n. Thus all for spaces are

the same.

To prove (38) note that by (??),

rTn rj = rTn−1rj − αnp
T
n−1Arj.

By our previous remarks rj must be a linear combination of p0, . . . pj, all of which

are orthogonal to pn−1 by the induction hypothesis if j < n− 1. If j = n− 1 then it

becomes

rTn−1rn−1 − αnp
T
n−1rn−1.

But by (??),

αn = (rTn−1rn−1)/(p
T
n−1Apn−1),

and by (??)

pTn−1Apn−1 = pTn−1A(rn−1 + βn−1pn−2) = pTn−1Arn−1,

so

αn = (rTn−1rn−1)/(p
T
n−1Arn−1),

which implies the rTn rn−1 = 0.

To prove (39) we start with

pTnApj = rTn pj + βnp
T
n−1Apj,

which is clearly 0 if j < n− 1. If j = n− 1 this becomes

pTnApn−1 = rTnApn−1 + βnp
T
n−1Apn−1.

This will be zero if

βn =
−rTnApn−1

pTn−1Apn−1

=
−αnrTnApn−1

αnpTn−1Apn−1

,
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whereas by definition

βn =
rTn rn

rTn−1rn−1

.

So if suffices to show the two numerators and two denominators are actually equal.

First, by (35)

rTn rn = rTn (rn−1 − αnApn−1) = −αnrTnApn−1.

Next, by (37) and (35),

rTn−1rn−1 = (pn−1 − βn−1pn−2)
T (rn − αnApn−1)

= 0 + 0 + 0− αnp
T
n−1Apn−1.

This completes the proof of (39).

Theorem 117. If the CG iteration is applied to the system Ax = y for a positive

definiite matrix A, and the iteration has not already converged (i.e., rn 6= 0) then xn

is the unique point in Kn that minimizes ‖x∗ − xn‖A. Thus this quantity decreases

monotonically with n.

Proof. By construction xn ∈ Kn and since Kn ⊂ Kn+1 the monotonicty is

obvious. Suppose x ∈ Kn. Let en = x∗ − xn and ∆x = xn − x. Then

‖x∗ − x‖A = (en +∆x)TA(en +∆x)

= eTnAen +∆xTAen + eTnA∆x+∆xTA∆x

= eTnAen +∆xTAen +∆xTAen +∆xTA∆x

= ‖en‖A + ‖∆x‖A + 2∆xTAen.

We claim that Aen = (Ax∗ − xn) = y − Axn = rn. We can prove this by induction.

For n = 0, we have r0 = y = y −A0 = y −Ax0, so it is true. Next suppose it is true

up to n− 1. Then by (35), the induction hypothesis and (34),

rn = y − Axn−1 − αnApn−1 = y − A(xn−1 − αnpn−1) = y − Axn,

as desired

Thus by (38), Aen = rn is orthogonal to Kn, and so is orthogonal to ∆x which is

in Kn. Thus

‖x∗ − x‖A = ‖en‖A + ‖∆x‖A.
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As a function of ∆x this is clearly minimized by taking ∆x = 0, or x = xn. �

As in the GMRES iteration, we can approximate the size of en by considering

polynomials on the spectrum of A. If the iteration has not already converged then

en = p(A)e0 for some polynomial of degree n with p(0) = 1. If σ = {λ1, . . . , λn} is

the spectrum of A (i.e., the union of eigenvalues) then by the spectral theorem we

can write

e0 =
n∑

k=1

akvk,

en = P (A)e0 =
n∑

k=1

akp(λk)vk,

so

‖e0‖2A =
n∑

k=1

|ak|2λk,

‖en‖2A = ‖P (A)e0‖2A =
n∑

k=1

|ak|2λk|p(λk)|2.

Hence

‖en‖A ≤ ‖e0‖Amax
k

|p(λk)|.

For example, if A has only k distinct eigenvalues, then we can choose a degree k

polygnomial which vanishes at these points and is 1 at the origin, so ‖en‖A = 0, i.e.,

the iteration has converged.

If the spectrum lies in the interval [1, κ] then we could set a = 1
2
(1 + κ) and take

the polynomial p(z) = (1− z
a
)k. Then p(0) = 1 and

|p(x)| ≤ |z − a

a
|k = (

κ− 1

κ+ 1
)k,

so we get exponential convergence.

We can do even better by using a trick. The rabbit we pull out of a hat is the

Chebyshev polynomial

Tn(z) =
1

2
[(z +

√
z2 − 1)n + (z −

√
z2 − 1)n].

This really is a polynomial in z because expanding by the binomial theorem, every

odd power of the square root on the left is canceled by a term from right, leaving
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only even powers. If we set z = cos(θ) and w = cos θ + i sin θ, then we get

Tn(cos θ) =
1

2
[(cos θ +

√
cos2 z − 1)n + (cos θ −

√
cos2 z − 1)n]

=
1

2
[(cos θ + i sin θ)n + (cos θ − i sin θ)n]

=
1

2
[wn + w̄n]

= ℜ(w)
= cos(nθ).

THus |x| ≤ 1 implies |Tn(x)| ≤ 1. Let L(x) be the linear map that sends [1, κ] to

[−1, 1] and set p(x) = Tn(L(x))/Tn(L(0)). Then p(0) = 1 and

max
[1,κ]

|p| = 1

T (L(0))
.

Since L(x) = (x− 1+κ
2
) 2
κ−1

, we have L(0) = κ+1
κ−1

. Thus

Tn(L(0)) = Tn(
κ+ 1

κ− 1
).

A simple calculaton shows that if z = (κ+1
κ−1

then

z ±
√
z2 − 1)n =

κ+ 1

κ− 1
± 2

√
κ

κ− 1
=

κ± 2
√
κ+ 1

(
√
κ− 1)(

√
κ+ 1)

==
(
√
κ± 1)2

(
√
κ− 1)(

√
κ+ 1)

=

Thus

Tn(z) =
1

2
[(

√
κ− 1√
κ+ 1

)n + (

√
κ+ 1√
κ− 1

)n]

Hence

max
[1,κ]

|p| ≤ 2

(
√
κ−1√
κ+1

)n + (
√
κ+1√
κ−1

)n
≤ 2(

√
κ− 1√
κ+ 1

)n ≤ 2(1− 1√
κ
)n ≤ 2e−n/κ.

Thus any fixed degree of precision can be attained in about O(
√
κ) iterations.

3. Symm’s method

If u is harmonic on D with continuous boundary values, then the mean value

property (or the Poisson integral formula for z = 0) says

u(0) =

∫

T

u(eiθ)
dθ

2π
.
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If v is a harmonic funtion on a simply connected domain Ω and f is a conformal map

from D to Ω taking 0 to z0 then v ◦ f is harmonic on the disk so

v(z0) = v(f(0)) =

∫

T

v(f(eiθ))
dθ

2π
=

∫

∂Ω

v(z)dωz0 ,

where ωz0 is the harmonic measure for Ω with respect to z0.

We can discretize the integral by breaking ∂Ω into interval {Ij} to form the linear

equation

v(z0) =
∑

j

∫

Ij

v(z)dωz0(z) ≈
∑

j

ωj(Ij) ·
1

|Ij|

∫

Ij

v(x)dx.

where ωj = ωz0(Ij) and we are assuming that the density for harmonic measure is

approximately constant on each interval. If discretize into n intervals and choose n

linearly indenpendent functions v, then we get n linear equations for the n unkown

values {ωj}. Solve the system and multiply by 2pi to get the spacings for the Schwarz-

Christoffel parameters.

What function can we choose? We discuss several possible choices of test func-

tions.

Power functions: The most obvious collection of linearly independent harmonic

functions might be {ℜ(zn)}. However, unless the domain is a circle centered at the

origin, these functions will have huge oscillations over the bounadry (consider z100)

and we will not even attempt to use them.

Logarithmic poles: One example of harmonic function on Ω is

log
1

|z − w| ,

assuming w 6∈ Ω, so we must have

log
1

|z0 − w| =
∫

∂Ω

log
1

|z − w|dωz0(z).(40)

for any w 6∈ Ω. If we take n such functions with n different poles, then they must

be linearly independent (since a finite combination of finite values can’t give a pole).

See Figure 5, where we have used these functions to approximate the conformal map

onto a C1 domain. The matrix we get is almost, but not quite symmetric. If we were

to replace the off diagonal elements

1

|Ij|

∫

Ij

log
1

|a− x|dx,
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by the value log 1
|a−zj | at the center zj of the interval Ij, then it would become sym-

metric.

The main concern with a method like Symms’ is how diffiucult it is to solve the

linear system. We will discuss this in greater detail later in the chapter, but the main

idea is that the more “diagonal” the matrix looks, the easier it will be to solve. The

logarithmic function does not decay very quickly, so that the matrix we get above

does not decay very quickly away from the diagonal. There are several things we

might try to improve this.

-10 10 20

2.5

5

7.5

10

12.5

15

10 20 30 40

-1

1

2

3

Figure 1. Symms method with logarithmic poles applied to an el-
lipse, discretized by 40 points. The top left shows the target domain
and the top right is a reconstruction using a 100 term power series
and the parameters given by Symms method. The second row shows a
histogram of the distribution of the eigenvalues of the matrix and the
graph of a singel row of the matrix. The full matrix for this example is
shown in Figure 5. For this example the condition number is 18.3437.
The quasiconformal distance (based on triangles all with one vertex at
the origin) is 1.83272.
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Figure 2. The same as the four bottom pictures in Figure 1, except
that we have discritized the ellipse with 100 points. For this example
the condition number is 46.9604. The quasiconformal distance (based
on triangles all with one vertex at the origin) is 1.3427.

Normal dipoles: The most obvious option is to replace the single logarithmic

pole by two nearby poles with opposite signs, e.g.,

log
1

|z − w1|
− log

1

|z − w2|
= log

|z − w2|
|z − w1|

,

which decays like O(ǫ|z−w|−1) away from the poles where ǫ = |w1−w2|. See Figure
3 for a contour plot of this function with w1, w2 = ±1. The function vanishes along

the vertical axis; this is the set of points equidistant from both poles.

-10 -5 0 5 10
-10

-5

0

5

10

Figure 3. The level lines of the dipole kernel with poles at ±1. The
kernel vanishes on the perpendicular bisector of the segment connecting
the poles.
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So for each segment in the discretized boundary we place two logarithmic poles

nearby. First consider the case when these points both lie on an outward normal to

the curve. We will call this a normal dipole. The resulting kernel function vanishes

along a curve parallel the boundary, as well as tending to zero far from the poles. Thus

the matrix we get should be large along the diagonal and small everywhere else. See

Figure ??. This example uses poles located at the points 1
2
(a+b), 1

2
(a+b)+i1

2
(b−a)}.
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0.6

Figure 4. The same as the four bottom pictures in Figure 1, except
that we are using a matrix derived from normal dipoles. For this ex-
ample the condition number is 13.3005. The quasiconformal distance
(based on triangles all with one vertex at the origin) is bounded by
1.0282.

Tangential dipoles: The other obvious arrangement of the two poles is to place

them parallel to the boundary. For example, we could use the points {1
3
a+ 2

3
b, 2

3
a+ 1

3
b}.

Here the two poles are both on the boundary edge and the corresponding kernel

function is zero on a line perpendicular to the boundary. The resultng matrix will

be zero along the diagonal (since the integral of the two poles exactly cancel on the

interval containing the poles) and be negative close to the diagonal on one side and

positive near the diagonal on the other. Thus the matrix looks similar to an anti-

symmetrix one. However, Figure ?? shows that the resulting matrix has eigenvalues

very close to zero, and solving the system does not even lead to vector with positive

components (which the vector of harmonic measures must be).

Subtended angles: A similar function is given by the “subtended angle”, where

we let

vk(z) =
1

π
arg(

bk − z

ak − z
),
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Figure 5. The same as the four bottom pictures in Figure 1, except
that we are using a matrix derived from tangential dipoles. The re-
sulting matrix has complex eigenvalues; there are two real eigenvalues,
±7.17329 ·10−7, four complex eigenvalues that have relatively large real
parts, ±0.00325618 ± i0.945374I, and the rest have real parts on the
order of 10−17. So in the plots of the eigenvalues, we have only shown
the imaginary parts. The tiny eigenvalues make solving the system
unreliable, and when we let Mathematica attempt to do so, it returns a
vector with all negative components (whereas the solution should have
positive components).

where Ik = [ak, bk] (ak comes first in the orientation of the curve). This vanishes on

the line containing Ik. The general shape of these functions is simlar to the normal

dipoles above, but the decay of the subtended angle functions seems a bit better and

the eigenvalues of the resulting matrices seem to be more clustered, which should

lead to faster solutions. Note that

vk(z) =
1

π
ℑ(log bk − z

ak − z
).

If we took the real part of the function instead, we would have the tangential dipole

considered above (with the poles at the endpoints of the interval). Thus the subtended

angle kernel is the harmonic conjugate of a tangential dipole kernel. so that this is

almost the same as the tangential dipole kernels considered above.

Modified subtended angle: The subtended angle function is constant on

circular arcs passing through the endpoints of I. Thus by taking the function

wk(z) = (vk(z) − ck)/(1 − ck), for some constant ck, we can arrange for the our

test function to still be 1 on Ik, but vanish on a circle which may be a good fit to
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Figure 6. The same as the four bottom pictures in Figure 1, except
that we are using the subtended angle kernel. For this example the
condition number is 3.00654. However, this is mostly due to isolated
outlying eigenvalues; if we remove the two largest and two smallest
eigenvalues the ratio of largest to smallest of the remaining is only
1.19732. If we increase the number of points from 40 to 100, the bounds
remain essentially the same. The quasiconformal distance is bounded
by 1.0282.

the curve locally, if the radius of the circle is chosen to match the curvature of the

boundary at each point. See Figure 5.

Quadrature: Further improvements can be made by assuming that the distri-

bution function for harmonic measure is not constant on each interval, but is, for

example, a linear function and set up two equations for each interval involving the

parameters of this linear function. We will not expore this here. If the domain is

a polygon, we can also make use of the information that harmonic measure behaves

like a known power function near each vertex.

Multiply connected domains.
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Figure 7. Given an interval I, that interval subtends the same angle
from all points on a fixed circle through it endpoints. This means
that the subtended angle function discussed in the text is constant
on circles passing though the endpoints of the boundary interval. In
particular, this function vanishes on the line containing this interval.
If the boundary of the domain is soothly curved, then we can choose a
value θ so that v(z)− θ vanishes on a circle which is a better fit to the
boundary than the tangent line. This is what we called the “modified
subtended angle”.
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Figure 8. The same as the four bottom pictures in Figure 1, except
that we are using the modified subtended angle kernel. For this exam-
ple the condition number is 2.03454. The quasiconformal distance is
bounded by 1.01931. If we increase the number of points from 40 to
100 the conditions number becomes 2.01365 and the QC error becomes
1.01049. The 40× 40 matrix produced in this example has one pair of
complex eigenvalues close to the real axis, 1.02879 ± i0.0162981, so in
plotting the eigenvalues we have only used the real parts.



270 9. LINEAR METHODS

10

20

30

40

10

20

30

40

0

2

10

20

30

10

20

30

40

10

20

30

40

0
0.25

0.5

0.75

1

10

20

30

Figure 9. These show larger plots of the matrices that arise for the
ellipse discretized with 40 points using single logarithmic poles versus
the modified subtended angle functions. The second plot should look
more like an identity matrix (and it does).
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Figure 10. Plots of the condition numbers of the matrices corre-
sponding to single logarithmic poles, normal dipoles and the subtended
angle when the 2× 1 ellipse is discretized using 20, 30, . . . , 100 points.
For the single logarithmic pole the condition number seems to grow
linearly with the size of the matrix, but for the other two methods it
seems to approach a finite upper bound. In fact, for the subtended
angle kernel, the condition numbers actually decrease slightly as the
number of points increases.
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target domain and the top right is a reconstruction using a 100 term power series and the parameters given by Symms metho
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Figure 11. Symms method with modified subtended angle applied
to the starshaped curve parameterized by

θ → 1

5
(
1

2
sin(7θ) + sin(3θ) + 4)eiθ).

discretized by 100 points. The top left shows the target domain and
the top right is a reconstruction using a 100 term power series and the
parameters given by Symms method. The middle row shows a graph of
the full matrix on the left and a single row on the right. On the bottom
is a plot of the eigenvalues and a histogram of these same points. For
this example the condition number is 3.18457. The quasiconformal
distance is bounded above by 1.18226.
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4. The Kerzman-Stein formula

Suppose Γ is a smooth closed curve bounding a domain Ω and for a function f

define on γ define the Cauchy integral

u(w) =
1

2πi

∫

Γ

f(z)

z − w
dz, w ∈ Ω,

or

u(z) =

∫

Γ

f(z)H(w, z)dz, w ∈ Ω,

where

H(w, z) =
1

2πi

1

z − w
γ′(z),

where γ is the arclength parameterization of Γ and γ′ denotes the tangent direction

of Γ. Then u is a holomorphic funcion on Ω and if f was the boundary extension

of some holomorphic function on Ω then the Cauchy integral recreates this function.

This says that the map H : L2(Γ) → H2(Γ) is a projection. (In this section, a

boldface letter will indicate an operator and the non-bold version of the letter will

denote the kernel which we integrate against to define the operator, i.e., H is the

Cauchy kernel which is a function of two complex variables and H is the Cauchy

projection from L2 to H2.)

Given a closed subspace of a Hilbert space there is an “obvious” projection: the

orthogonal projections that maps each point to the closest point of the subspace. If

Γ is a circle, then the Cauchy integral is the orthogonal projection, but in general

(indeed, in all other cases) it is not. The orthogonal projection can also be written

as in integral operator

Su(w) =

∫

γ

S(w, z)f(z)|dz|,

although in this case the formula for S is not obvious. The kernel S(w, z) is called

the Szegö kernel. However, in a remarakable paper [], Kerzman and Stein show that

the kernel S is explicitly given in terms of the Riemann map of Ω to D and that it

can also be written in terms of the Cauchy integral. Putting these two observations

together gives a formula for the Riemann map in terms of the Cauchy integral.
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First, let us explain the connection between the Szegö kernel and the Riemann

map. Note that if {φj} is an orthonormal basis for H2(Γ), then

S(w, z) =
∞∑

j=1

φj(w)φ̄j(z), w ∈ Ω, z ∈ Γ,

since the orthogonal projection onto the span of {φj} is

f →
∑

j

〈f, φj〉φj.

This expansion implies S can be defined on Ω× Ω and satisfie

S(z, w) = S(w, z).

If Ω = D then we can take φj(z) = zj/
√
2π and deduce that

S(w, z) =
1

2π

∑

j

wj z̄j =
1

2π

1

1− wz̄
,(41)

by the neometric series formula.

Now fix a point a ∈ Ω and let f : Ω → D be a Riemann map which send a to 0

and assume f ′(a) > 0. We claim that

f ′(z) =
2π

S(a, a)
S2(z, a), z ∈ Ω.(42)

To prove (42), note that there is a relation between the Szegö kernels S for Ω and SD

for D.

S(w, z) =
√
f ′(w)SD(f(w), f(z))

√
f ′(z).

This holds becuase if {φj} are orthonormal in H2(T, ds) then φj ◦ f are orthonormal

in H2(Γ, |f ′|ds) and hence {φj ◦f ·
√
f ′(w)} are orthonormal in H2(Γ, ds). Note that

we are using the fact that f ′ is non-vanishing and hence has a single valued square

root on the simply connected domain Ω. Thus

S(w, z) =
∑

j

φj ◦ f ·
√
f ′(w)

√
f ′(z)

=
√
f ′(w)[

∑

j

φj ◦ f ]
√
f ′(z)

=
√
f ′(w)SD(f(w), f(z))

√
f ′(z),

as desired.
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Now set z = a and use f(a) = 0 and (41) to deduce

S(w, a) =
√
f ′(w)

1

2π

√
f ′(a).

Setting w = a gives

S(a, a) =
1

2π
|f ′(a)|,

and squaring boths sides gives

S2(w, a) = f ′(w)
1

(2π)2
f ′(a).

replacing w by z, this implies (since f ′(a) is real),

f ′(z) = (2π)2S2(z, a)
1

f ′(a)
= 2π

S2(z, a)

S(a, a)
,

which is the desired equality.

Therefore, if we can compute S(a, a) and S(z, a) explcitly, we can compute f ′ and

then recover f by numerical integration for interior points. On the boundary, we can

recover f by the formula

f(z) =
γ′(z)f ′(z)

i|f ′(z)| ,

which is based on the fact that since f(z) is on the unit circle, the tangent at f(z) is

if(z).

Next we have to explain how to compute the Szegö kernel in terms of the Cauchy

kernel. This will follow from writing the orthogonal projection S : L2 → H2 in terms

of the Cauchy projection H : L2 → H2. Both S and H are projections onto the same

subspace so

SH = H, HS = S.

Since S is orthogonal it is also self-adjoint, i.e., S = S∗, and hence

H∗S = H∗S∗ = (SH)∗ = H∗,

SH∗ = S∗H∗ = (HS)∗ = S∗S.

Subtracting gives

S(H∗ −H) = S−H,

and setting A = H∗ −H gives

S = H(I −A)−1,(43)
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assuming I−A is invertible (we shall see below that it is). We also have the relation

H∗ = S+H∗ − S = S+H∗S−HS = S+AS.(44)

This can be discretized and used to solve for the kernel S of S (since we know the

kernels for H and A explicitly.

Both (43) and (44) offer a way to compute S from H, although the first is only

valid when A is sufficiently small. For example, if we define the kernel of A as

A(w, z)H̄(z, w)−H(w, z), and assume that

1

4π2

∫

Γ

∫

Γ

|A(w, z)||dw||dz| < 1,

then A has operator norm < 1 and we have

S = H(I +A+A2 + . . . ).

The kernel for A is defined to be

A(w, z) = H(z, w)−H(w, z),

a differece of two functions with sigularities. It turns our, however, that these singu-

larities cancel and that A(w, z) is a smooth function which vanishes on the diagonal

{w = z}.
To see this first note that A is clearly C∞ off of the diagonal. To check that it is

C∞ on the diagonal, we condsider z = γ(s), w = γ(t) for t, s in some interval I and

γ : I → Γ being a C∞ parameterization. Think of s = t + (s − t) and take a power

series exapansion of γ around t to get

γ(s) = γ(t) + γ′(t)(s− t) +
1

2
γ′′(t)(s− t)2 + (s− t)3ϕ(s, t),

where ϕ is some C∞ function that will only appear in error terms and maybe different

in different equations (note that out assumptions do not imply that the infinite power

series for γ actually converges to γ). Then

z − w = γ(s)− γ(t) = γ′(t)(s− t)[1 +
γ′′(t)

2γ′(t)
(s− t) + (s− t)2ϕ,

and
1

z − w
=

1

γ′(t)(s− t)
[1− γ′′(t)

2γ′(t)
(s− t) + (s− t)2ϕ,

Also

γ′(z) = γ′(s) = γ′(t) + γ′′(t)(s− t) + (s− t)2ϕ,
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which gives

γ′(z)

z − w
=

1

s− t
+
γ′′(t)

2γ′(t)
+ (s− t)ϕ.

Similarly,

γ′(w)

z − w
=

1

s− t
− γ′′(t)

2γ′(t)
+ (s− t)ϕ,

Since the leading terms are real and equal, they still cancel when we conjuagate and

subtract, i.e.,

A(w, z) = H(w, z)H(z, w)

=
−1

2pii
(
γ′(w)

w − z
)− 1

2πi

γ′(z)

z − w

=
1

2pii
(
γ′(w)

z − w
)− 1

2πi

γ′(z)

z − w

=
−1

2πi
[ℜγ

′′(t)

γ′(t)
+ (s− t)ϕ].

However, since γ is an arclength parameterization of a smooth curve, γ′′ is perpen-

dicular to γ′ and hence the real part of the ratio is zero. Thus

A(z, w) = (s− t)ϕ(s, t),

for some smooth function and hence A is C∞ and vanishes on the diagonal.

Thus integration against A is a smoothing operator, i.e., Af ∈ C∞ for every

f ∈ L2 with an estimate |Dαf | ≤ Cα‖f‖2, for some constant depending only on Γ

and α. This means A is a compact operator (since this estimate means the image

of the unit ball is an equicontinuous family and hence every seqeuence in this image

contains a uniformly convergent subsequence, whose limit is obviously bounded and

hence in L2). Moreover

(iA)∗ = (iH∗ − iH)∗ = −iH+ iH∗ = iA,

so iA is compact, self-adjoint and hence has real spectrum (e.g.,Theorem 12.26 of

[?]). By the spectral theorem, this means that I −A = I − (−i)(iA) is invertible.
By the Cauchy integral formula

f(a) =
1

2πi

∫

Γ

f(z)

z − a
dz =

1

2πi

∫

Γ

f(z)

z − a
γ′(z)|dz|.
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This is exacly the same as writing

〈f, φa〉,

where

φa(z) =
1

2πi

γ′(z)

z − a
.

Since f ∈ H2, its inner product with any vector is the same as the inner product

with the orthogonal projection of the vector into H2. Thus

〈f, φa〉 = 〈f,Sφa〉.

Since this holds for all f ∈ H2, and a vector is uniquely determined by its inner

product with all other vectors, the right hand side of the inner product must agree

with the Szegö kernel, i.e.,

S(z, a) = Sφa.

Combined with our earlier remarks, this means

S(z, a) = H(1−A)−1φa,

and if ‖A‖ < 1, then

S(z, a) =
∞∑

k=0

HAkφa,

where

HAkφa =

∫

Γ

∫

Γ

· · ·
∫

Γ

H(z, w1)A(w1, w2) · · ·A(wk, w)φ(w)|dw1|d|w2| · · · d|wk|.

The convergence is uniform on Ω.

Equation (second S eqn) offers a different way to compute the Szegö kernel. The

equation

S+AS = H∗,

becomes

S(z, a) +

∫

Γ

A(z, w)S(w, a)|dw| = H(a, z).

We discretize this continuous equation by selecting n evenly spaced points {zk}n1
along Γ and writing

S(zj , a) +
L

n

∑

k

A(zj, wk)S(wk, a) = H(a, zj),
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where L is the length of the boundary. This is clearly a linear system of the form

Bx = y in which the solution x, represents values of the Szegö kernel at our chosen

boundary points. We can solve this using the GMRES method discussed earlier.

It is also worthwhile taking a closer look at the matrix B that occurs here. If we

use the fact that A vanishes on the diagonal and elsewhere replace A by its definition

in terms of the Cauchy kernel, we get

S(zj, a)+
L

n
(
γ′(zj)

2πi
)
∑

k 6=j

1

z̄j − z̄k
S(wk, a)+

L

n

1

2πi

∑

k 6=j

1

zj − zk
S(wk, a)γ

′(wk) = H(a, zj),

so

Bx = x+ aC1x+ bC2y,

where a, b are the constants

a = −L
n

γ̄′(zj)

2πi
, b =

L

n

1

2πi
,

and C1, C2 are the matrices with zero diagonals and off-diagonal elements given by

C1 = (
z̄j − z̄k

)
, C2 = (

zj − zk
)

.

The matrix B is normal since it is the sum of the identity and a skew-Hermetician

matrix. Moreover, it is known that this matrix has bounded condition number for

large n with constants depending only on the smoothness of A, [?].

5. The fast multipole method

As was noted in Section 5, fast solution of an n × n linear system Ax = y by

iterative methods depends on two potential speedups: having to apply the matrix

fewer than O(n) times and being able to apply A to a vector in fewer than O(n2)

operations. In this section we describe an algorithm for dealing with the latter prob-

lem; the fast multipole method of Greengard and Rokhlin. This method works best

when we are given a collection of n points {zk} and a kernel function K(z, w) and

the matrix A is of the form ajk = K(zj, zk). The kernel K should have good analytic

properties in the sense as a function of z it may have a pole at w, but that we can find

series expansions that approximate K(z, w) is balls B(a, 1
2
|w− a|) or near infinity in

regions A = {|x− w| > r}. The standard examples are the Cauchy kernel

K(z, w) =
1

z − w
,
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where we have

1

z − w
=

1

(z − a)− (w − a)
=

1

z − a

1

1− w−a
z−a

=
1

z − a

∞∑

k=0

(
w − a

z − a
)k,

if |z − a| > |w − a| is the expansion near infinity and

1

z − w
=

−1

w − a

∞∑

k=0

(
z − a

w − a
)k,

is the expansion near a. Other kernels that can be handled by the multipole method

include

log
1

|z − w| ,
1

(z − w)2

in the plane and

e−|x−y|2 ,

on the real line.

We want to compute (Ax)j =
∑

kK(zj, zk)xk, for n different indices j. Naively,

this requrires O(n2) operations. However, if some of the zj’s are clustered close

together, compared to their distance to zk, then the value of K(zj, zk) is about the

same over the whole cluster. Thus the data can be grouped together and the combined

effects computed simultaneously. By way of review, we first describe how the method

works in an easier setting: binary trees.

Suppose T is a binary tree with vertex set V of size n, f : V → R is given, and

we want to evaluate the sum

F (v) =
∑

w∈V \{v}
K(v, w)f(w),

at every v ∈ V where K(v, w) = aρT (v,w) and ρT is the path distance in the tree.

There are n inputs and n outputs and each input effects the evaluation of every

output, so naively it seems that n2 operations are required. However, all n values of

F can be computed in O(n) steps as follows. Choose a root v0 ∈ V and for any v ∈ V

let D(v) ⊂ V be the vertices that are separated from the root by v, not including v.

(i.e., its descendants). Let D̃(v) be all other vertices other than v itself. Let

F1(v) =
∑

w∈D(v)

K(v, w)f(w), F2(v) =
∑

w∈D̃(v)

K(v, w)f(w).
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We can compute each of these functions in one pass through the tree. For F1 start

by setting F1(v) = 0 for each leaf of T and proceed from the leaves to the root by

setting

F1(v) = a
∑

w∈C(v)

F (w),

where the sum is over the children of v. This is called the “up-pass” since we start at

the leaves and work towards the root. Next, we transfer values from F1 to F2 using an

“across-pass”. For each vertex where F1 has already been evaluated by the up-pass,

add a2 · (f(v) + F1(v)) to F2(w), for each sibling w ∈ S(v) of v (w 6= v is a sibling

of v if it has the same parent as v). Lastly, we compute F2 using a “down-pass”, by

setting F2(v) = 0 when v is the root (which has no sibling, so was not effected by the

across-pass), and in general if F2(v) has already been computed, then for each of its

children w we set

F2(w) = F2(w) + a(F2(v) + f(v)).

We get the desired output by noting

F (v) = f(v) · (F1(v) + F2(v)),

for every v ∈ V (we can evaluate vertices in any order). Thus F has been evaluated

at all n points in O(n) steps.

The same method works more generally. If we are given a rooted tree T with

vertex set V we turn it into a directed graph G by taking two copies V1, V2 of V ,

point all edges towards the root in V1 and away from the root in V2 and connect each

vertex in V1 to the copies of its siblings in V2. Assume we have linear space X1
v , X

2
v

for each vertex v ∈ V and a linear map from each X1
v to its parent and from each X2

v

to each of its children. Assume we also have an “across map” Av : X1
v → X2

v . We

define a linear map L(w, v) : Xw → Xv by composing maps along the path from w

to v. Given the n values xv ∈ X1
v , v ∈ V the method above evaluates all n values of

F (xv) =
∑

w∈V
L(w, v)xw

in only O(n) steps.

In the previous example, the linear spaces were one dimensional and the edge

maps were multiplication by a. For our applications, the tree will be a tree of dyadic

boxes that intersect the set E = {zk}. To each box we will associate a finite set
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of regions; either disks or disks complements. The linear spaces will be spaces of

analytic functions on these regions. We will actually consider two situations: an

idealized model and a finite dimensional approximation that we actually compute.

In the idealized version we consider the the space XQ of all analytic functions on a

region W (add ∞ for disk complements). If W is a disk then every such function has

a power series
∑∞

k=0 an(z − a)k converging in the disk and for the disk complements

there is a Laurent series
∑∞

k=0 an(z − a)−k. The finite dimensional version of these

spaces are the spaces Xp
Q. These consist of p term power series

∑p
k=0 an(z − a)k (for

disks) or Laurent series
∑p

k=0 an(z−a)−k (for disk complements). There is an obvious

truncation map T : Xv → Xp
v and the inclusion map I : Xp

Q → XQ.

Given any two boxes and associated regions, one of which is contained the other,

we can restrict a function from the larger region to the smaller. This defines restriction

maps R between the infinite dimensional spaces XQ. For the finite dimensional

analog, we define maps Rp between the spaces Xp
Q by restricting and then truncating

the series expansion.

When we allow infinite expansions, then restricting an analytic function to a

subdomain introduces no errors and the method described above allows us to compute

series expansion for the Beurling transform in time O(n) with no errors (except for

filling in the initial values of the arrays). Similarly, if we restrict a power series

to a smaller disk, there is no error introduced, since the restriction of a degree p

polynomial is still a degree p polynomial. However, if we change the center of a

Laurent expansion, then a finite expansion may become infinite and truncating to p

terms causes an error (depending on p and the geometry of the regions). In this case,

performing the restriction-truncation along a series of nested regions might not give

the same result as restricting to the smallest domain is single step. Because of this,

we have to estimate the errors at each step and show the total accumulated error

along the whole path is still small.

Given a point set E with n points, assume they are contained in a unit square

Q0. Let Gn be the division of Q0 into 4n subquares of side length 2−n. We refer to

these as the nth generation dyadic subsquares of Q0. The collection of all dyadic

subsquares forms a tree. We let Q∗ denote the parent of Q and 3Q the concentric

square with 3 times the side length (which is the union of Q and the 8 squares of the
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same generation that touch it). Given E, the set of squares which contain a point of

E form an infinite subtree. We consider the finite subtree TE formed by removing the

squares which are smaller than the local feature distance (the distance of the square

to the second closest point of E). For any kth generation square Q corresponding

to a vertex of TE we associate one disk complement, WQ, concentric with Q and

with boundary radius ℓ(Q). We also associate 27 disks {DQ′}, one covering each kth

generation square Q′ of TE that is in 3Q∗ \ 3Q. Note that each disk associated to Q

is inside the disk complement assoicated to Q so that we can restrict from the disk

complement to the disks. Also if Q ⊂ Q′ then WQ′ ⊂ WQ and DQ ⊂ DQ′ .

For each leaf Q of TE compute the Laurent expansion of

Example 1: The Cauchy kernel:

As an example, suppose we want to compute a discrete version of a Cauchy

integral
∫

γ

f(w)

z − w
dw ≃

∑

k

f(wk)∆k

zk − wk
,

at n points.

Example 2: The logarithmic potential

Example 3: The Schwarz-Christoffel integral

6. Computing the Beurling transform

We will now introduce the elements needed to apply these general ideas to the

specific problem of computing ∂Tµ.

We start with a partial ǫ-representation of a polygonal domain. As in Section

??, we use this to construct a dilatation µ which is a sum
∑
µk of terms which are

supported in small squares which cover a neighborhood Ns of the boundary of our

decomposition. We assume that µ is defined by reflection on the lower half-plane,

so that solutions of the Beltrami equation will be real on the real line. Each µn is

a polynomial in x and y of degree at most O(n) restricted to a small square. The

terms of this polynomial are of the form zkxayb = (x + iy)kxayb with 0 ≤ k ≤ p

and 0 ≤ a, b ≤ C where p grows depending of the desired accuracy, but C is fixed,

depending only on the degrees of the piecewise polynomials used in our partition of

unity associated to the decomposition W of our representation. Thus there are only
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O(n) terms to consider, not O(n2) as would be the case if all powers of x and y less

than n had to be considered.

We take as our tree the collection of all Whitney squares in the upper half-plane

which hit the support of µ, i.e., which hit Ns. There are O(n) such, since there

are O(n) boundary components in our decomposition and each only hits a bounded

number of Whitney boxes (for arches we only need to cover the edges of the arch, not

the interior). The adjacency relation is the usual one; Q is a child of Q∗ if the base

of Q∗ contains the base of Q and Q is maximal with this property. A given Whitney

square can have zero, one or two children. Those with no children are called “leaves”

of the tree. Often a child is half the size of its parent and the top edge of the child is

half the bottom edge of the parent, but because of arches, there are some cases where

a child is much smaller than its parent. A neighbor of a dyadic Whitney square is a

distinct dyadic Whitney square of the same size which touches along the boundary.

The terms “descendant” and “ancestor” have the usual meanings for a rooted tree.

For any Whitney box Q in H with base interval I (its vertical projection on R) let

cQ denote the center of this base and let cjQ, j = 1, . . . , 8 be 8 equally spaced points

in I (including the right, but no the left endpoint of I). Let AQ = {z : |z−cQ| ≥ λ|I|}
where we choose 1

2

√
5 < λ < 5

4
, and let Dj

Q = {z : |z − cjQ| ≤ 1
4
|I|}. These will be

called the type I and type II regions associated to Q respectively. See Figure 12. The

number λ is chosen in this range so that the type I region does not intersect Q, but

it does contain the type II regions of any Q′ which is the same size as Q, but not

adjacent to it. See Figure 13. A series expansion in terms of (z − cQ)
−1 or (z − cjQ)

will be called type I and type II expansions respectively.

Given a Whitney box Q we can restrict µ to Q and compute type I and type II

expansions for ∂Tµ|Q. Since µ is a piecewise polynomial of degree O(p), and there

is an explicit formula for the expansion of each monomial, this can be done in time

O(p log p) by the remarks in Appendix ??.

Given a Whitney box Q and its parent Q∗, the type I region for Q contains that

for Q∗ and so we can take the analytic function f defined by the type I expansion for

Q and compute its Laurent expansion in the type I region for Q∗. Then truncate this

(infinite) series to get a type I expansion for Q∗. This is called a I-to-I conversion or
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Figure 12. A Whitney box and its type I and type II regions.

Figure 13. The three kinds of conversions: multipole-to-multipole,
local-to-local and multipole-to-local. In each case the first Whitney
square is shaded lighter than the second.

a multipole-to-multipole conversion. See Figure 13. This introduces an error of ǫMf ,

where ǫ = λp, where λ < 1 and Mf is the maximum of f on the type I region of Q.

Similarly, we can take a type II expansion for Q and restrict it to one of the

two type II regions for a child of Q whose center agrees with the first center or is

immediately to the left of it. Changing the center of the expansion just gives another

degree p polynomial and there is no error introduced, i.e., R = Rp. This is a local-

to-local conversion.

Finally, the type I region of a Whitney box Q contains the type II regions of a

box Q′ of the same size if Q′ is in 3Q∗ but not in 3Q (here Q∗ denotes the parent of

Q). Therefore, we can restrict the type I expansion of Q to a type II region of Q′

and do a I-to-II conversion (or multipole-to-local conversion), with an error of ǫMf ,

as above.
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For a given box Q, the associated regions cover the whole upper half plane, except

for a region of bounded hyperbolic diameter around Q.

We think of the type I and type II expansions associated to each Q as defining

two arrays indexed by the Whitney boxes. We next describe how to initialize and

update these arrays:

Initialize Type I array: For each Q compute the initial type I expansion.

Initialize Type II array: For each Q compute the initial type II expansion

for each type II disk.

Modify Type II array: Compute type II expansions for two neighbors and

add to their initial expansions. Every type II expansion now has contribu-

tions from at most three boxes (its parent and the parent’s neighbors)

Perform the up-pass: Starting with leaves of the tree, do I-to-I conversion

of the current type I expansion and add it to the type I expansion of the

parent. Continue until we reach the root.

Perform the across-pass: For each square Q, do I-to-II conversions taking

the current type I expansion and obtaining type II conversions for regions

corresponding to centers in 3I∗ \ 3I where I is the base of Q and I∗ is the

base of Q’s parent.

Perform the down-pass: Starting with root square, do II-to-II conversions,

taking each type II expansion and restricting it to the two type II expansions

of the children. Continue downward until we reach the leaves of the tree.

This is clearly O(n) steps and when we are finished, the type I expansion of a

square Q contains the contribution of Q and every descendant of Q and the type

II expansions of Q contain the contributions of every square which not a (strict)

descendant of Q or its two neighbors.

The third step (Modify the type II array) is necessary because the tree structure

on Whitney squares does not completely reflect their actual placement in H; two

squares that are far apart in the tree could be adjacent in H. The type I region of a

square does not contain the type II disks of its neighbors (they are too close), so we

need this special step to pass the information to these regions (for other regions it is

passed in the across-step).
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Now suppose D is an empty piece of our decomposition and Q is the Whitney box

containing W . If D is a disk, it is contained in a type II region of a grandparent of Q

and is contained in the type I region of all grandchildren of Q and its two neighbors.

Therefore we can do series conversions and compute the expansion in D due to these

expansions. There are only a finite number of Whitney boxes whose contributions

have not been accounted for and all these lie within a uniformly bounded distance of

Q. For each piece of µ supported in one of these boxes, we compute the contribution

to D directly.

Given any Whitney boxes Q′ and Q there is a path in our directed graph that

starts from an initial expansion for Q and goes to a terminal expansion for Q′ or one

of its neighbors. To see this we consider several cases.

(1) If Q = Q′ there is nothing to do.

(2) If Q = Q2 is an ancestor of Q1 then the all “down” path works.

(3) If Q3 is a neighbor of square Q2 in (1), then start with the special “Modify

type II” step and follow by all downs.

(4) If Q4 is a descendant of a case (2) square, then follow “up” paths until we

hit a child of Q3 and then use a “across” step to bring us to an ancestor of

Q′ (this works because by the definition of the across step).

(5) If Q is a descendant of Q′, then use all “up”’s.

(6) The only remaining case is that Q is a neighbor of Q′ or a descendant of a

neighbor. Using an all “up” path works.

If D is an empty piece of our decomposition, we want to show that the desired

expansion for ∂Tµ can be computed using a bounded number or type I and type

II expansions, plus a bounded number of direct expansions of nearby squares. Fix

such a D and suppose Q is any Whitney box, then D is a subset of one the type I

or II regions associated to Q or one of its neighbors, unless Q is within a uniformly

bounded hyperbolic distance M of D. If D is a subset of one of these regions, then

we can convert the series expansion on the region to one on D, the conversion being

one of three types. First, we might have to convert a power series in (z − a) to one

in (z − b); this happens when D is a disk or arch contained in a disk and involves no

loss of accuracy. Second, converting an expansion in (z − a)−1 to one in (z − b)−1;

this happens when D is an arch which contains Q in its bounded complementary
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component and there is a loss of accuracy (described in Lemma 118). Finally, in all

other cases we must convert an expansion in (z − a)−1 to one in (z − b); this also

involves a small loss of accuracy.

Lemma 118. Suppose |a| ≤ 1
4
, |b| ≤ 1

2
and f is analytic on {z : |z − a| > 1}

and |f | ≤ 1 there. Also assume f(z)z3 is bounded as z → ∞. Suppose A = {z :

|z− b| > 2} and let f(z) =
∑∞

j=0 aj(z− b)−j be the Laurent expansion for f in A and

let g(z) =
∑p

j=0 bj(z − b)−j. Then there is 0 < λ < 1 so that for ǫ = λp,

(1) a0 = a1 = a2 = 0,

(2) |g(z)| ≤ (1 + ǫ)|z|−3 ≤ |z|5/2, if p is large enough.

(3) |f(z)− g(z)| ≤ ǫ|z|−3.

The proof is just the standard estimates for Taylor series and left to the reader. If

we start with an expansion f0 on the type I region of a box Q of size 1 and then restrict

the expansion to get an expansion f1 for the type I region of its parent, then repeat

this over and over, we accumulate an error each time. Suppose fk is kth expansion

on the kth region Ak. Then supAk
|fk| ≤ |z|−5/2 which means the maximum error

between fk(z) and fk+1(z) on Ak+1 is bounded by ǫ|z|−5/2. So the total error that is

ever possible inside AN is

≤
N∑

k=1

|fk(z)− fk+1(z)|

≤
N∑

k=1

ǫdiam(∂Ak)
−5/2(diam(∂An)/diam(∂Ak))

−3

≤ O(ǫ)diam(∂AN)
−3

N∑

k=1

diam(∂Ak)
1/2.

Since the regions grow by at least a factor of two at each stage, the final sum is

dominated by its final term, and so the total error is less than O(ǫdiam(∂AN)
−2.5.

Summarizing this argument gives:

Lemma 119. Suppose f0(z) =
∑p

k=3 ak(z− cQ)
−k is a type I expansion associated

to a dyadic Whitney square Q0 and |f0| is bounded by M on the type I region of

Q0. Suppose Q1, . . . , QN are ancestors of Q and fk is the result of applying a I-to-I
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conversion to fk−1 for k = 1, . . . N . Then on the type I region of QN , |f0 − fN | ≤
O(ǫM(diam(Q0)/diam(QN))

2.5) with ǫ = λp and a constant that is independent of N .

Corollary 120. Suppose Q0 is a Whitney square and for each Q which is a

descendant of Q0 let fQ be the type I expansion of ∂Tµ for µ restricted to Q. Let f0

be the type I expansion for Q0 obtained by running the up-pass overall descendants

of Q with initial data {fQ}. Let F0 =
∑

Q∈D(Q0)
fQ be the exact sum of these initial

expansion restricted to the type I region of Q0. Then

|f0(z)− F0(z)| = O(ǫ
diam(Q0)

2

|z − cQ0|3
‖µ‖∞).

Proof. The maximum of fQ on the type I region ofQ is clearlyO(‖µ‖∞/diam(Q)).

Therefore, by the Lemma 119 the error of applying I-to-I conversions until we reach

Q0 is

O(ǫ‖µ‖∞diam(Q)1.5/diam(Q0)
2.5).

There are at most 2k descendants of Q0 with diam(Q) = 2−kdiam(Q0), so the total

error of all of these is

O(ǫ‖µ‖∞diam(Q).5/diam(Q0)
1.5) = O(ǫ‖µ‖∞2−k/2/diam(Q0)).

We now sum k = 1, 2, . . . and see the total error over all descendants of Q0 is at

most O(ǫ‖µ‖∞/diam(Q0)). The error is an analytic function on the type I region of

Q0 which decays like |z− cQ0 | near infinity (since it is a difference of functions which

do), and this gives the estimate in the corollary. �

Corollary 121. Let f be a type II expansion for a Whitney square Q which is

obtained by starting with expansions of ∂Tµ and applying the up-pass, across-pass

and down-pass. Then the total error between f and simply adding all the initial

expansions which contribute to f is O(ǫ‖µ‖∞/diam(Q)).

Proof. The contribution of the ancestors of Q are through II-to-II conversions,

which introduce no error. The neighbors of ancestors contribute are direct computa-

tion of a type II expansion, followed by II-to-II expansions, so also contribute no error.

Every other contribution comes from a sequence of I-to-I conversions (the up-pass),

followed by a I-to-II conversion (the across-pass) and then II-to-II conversions (the

down-pass). Fix a square Qj to which the across-pass is applied. The errors due to all
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the descendants of Qj is bounded by O(ǫ‖µ‖∞/diam(Qj). If diam(Qj) = 2jdiam(Q),

then this is O(2−jǫ‖µ‖∞/diam(Q)). The across-pass adds an error with the same

bound and the following down-pass adds no new error. Thus the total contribution

of Qj to the error is O(2−jǫ‖µ‖∞/diam(Q)). There are only a bounded number (at

most 4) of such Qj’s of a given size, so summing over all possible j’s shows the total

error is at most O(ǫ‖µ‖∞/diam(Q)). �

Now every expansion that contributes to the final expansion on an empty region

is either directly computed from the data, or comes from an expansion created by

the up-pass, across-pass and down-pass. By the corollary, the up-pass creates a small

error, and we already known the across-pass creates a small error and the down-pass

creates no errors. Thus the total error comes from a uniformly bounded number of

terms, each of which has error bounded by O(ǫ‖µ‖∞/diam(Q)).

This completes the proof of Lemma ?? and hence of the theorem.





CHAPTER 10

The conjugation operator

After the Fourier trnasform, one of the most important operators in analysis is

harmonic conjugation: start with a function f on the unit circle, extend it har-

monically to the disk, take its harmonic conjugate and take the boundary values of

this function to get f̃ . The map f → f̃ (which we will sometimes also denote by

f → K[f ]) can be expressed in terms of Fourier series or in terms of convolution with

a singular kernel. We will consider both versions and prove that this operator is an

isometry on L2 and preserves the Hölder classes of continuous functions.

The conjugation operator is the prototypical example of a singular integral oper-

ator and study of these operators and their generalizations make up a large part of

modern analysis. This particular operator is important to us becuase it gives a test

for a function f = u+iv to be the boundary values of a holomorphic function, namely,

f has a holomorphic extension iff u and v satisfy the Cauchy-Riemann equations iff

f̃ = ũ+ iṽ = i(ṽ − iũ) = i(u+ iv) = if.

This observation can be applied to computing Riemann maps by considering methods

with take an arbitary mapping f and trying to improve it by imposing the condition

f̃ = if . In this chapter we will consider two such methods; one due to Theodorsen

which works for starshaped domains and another of Wegman which works for a larger

class of domains and which is closely related to Fornberg’s method (see Section 5).

1. Harmonic conjugates

If u is harmonic on the unit disk, a harmonic conjugate for u is a harmonic

funtion v so that f = u + iv is holomorphic. This means than u and v satisfy the

Cauchy-Riemann equations,

ux = vy, vx = −uy,
293
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hence

|∇u|2 = u2x + u2y = v2x + v2y = |∇v|2 = 2|f ′|2.

Therefore, any property of u which is determined by |∇u| alone is also true for v.

Two such properties involve the L2 norm of u on the boundary and Hölder continuity.

We deal with the L2 norm first.

Lemma 122. Suppose u is harmonic on D and continuous up to the boundary.

Then ∫

D

|∇u|2 log 1

|z|dxdy =
1

2

∫ 2π

0

|u(eiθ)− u(0)|2dθ.

In particular, if u and v are harmonic conjugates which both extend continuously to

the unit circle, then

‖u− u(0)‖2 = ‖v − v(0)‖2,

where the norm is taken on integrating over the unit circle.

Proof. We may assume that u(0) = 0. Recall Green’s theorem
∫∫

Ω

(u∆v + v∆u)dxdy =

∫

∂Ω

u
∂v

∂n
+ v

∂u

∂n
ds,(45)

Here ∆u denotes the Laplacian, ∆u = uxx + uyy. We will use this with the functions

|u|2 and log 1
|z| and the domain Ω = D \D(0, ǫ) for some small ǫ > 0. Since log 1

|z| is

harmonic over this region, left hand integral in Green’s theorem is just
∫∫

∆|u|2 log 1

|z|dxdy =

∫∫
2|∇u|2 log 1

|z|dxdy.

There are two boundary integrals; one over the unit circle and one over the circle of

radius ǫ. Since log |z|−1 = 0 on the unit circle, and has normal derivative 1 there, the

first boundary integral is just ∫
|u(eiθ)|2dθ.

On the other boundary component, log |z|−1 is equal to log 1
ǫ
and has normal deriva-

tive −1
ǫ
. On this boundary, the |u2| = O(ǫ2) and its normal derivative is O(|u||∇u|) =

O(ǫ) (since u is a smooth function vanishing at zero). Moreover, the length of this

boundary is 2πǫ). Thus the boundary integral over the ǫ circle is O(ǫ2 log 1
ǫ
) +
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O(ǫ2 1
ǫ
) = o(1). Thus the contribution of this boundary component is zero as ǫ → 0.

Putting all these together we get

2

∫∫
|∇u|2 log 1

|z|dxdy =

∫
|u(eiθ)|2dθ,

which is the desired estimate. �

The equality above remains true even if the boundary values of u are not contin-

uous; they only need to be in L2(T, dθ); one uses the case above on a slightly smaller

disk and then takes a limit in an appropriate way. For our purposes however, the

continuous case will be enough. A more subtle points concerns the final claim of the

lemma, where we assumed that both u and v have continuous extensions to the bound-

ary. It would be more convenient to assume that u has such an extension, and deduce

the continuity of v from that. However, this is not true. Consider the conformal map

f = uiv from the disk onto the region Ω = {(x, y) : −∞ < x <∞, 0 < y < (1+x2)−1.

The imaginary part of f if clearly bounded, and in fact is continuous (there are only

two quetionable points and ℑ(f) tends to zero at both of them). The real part of f

is unbounded however, and hence not continuous. Thus u is a harmonic conjuagte of

a continous function which is not itself continuous. See Figure 5

FIGURE 1 FIGURE 2

One might object that u really is continuous if we allow the values ±∞ and give

[−∞,∞] the obvious topology. However, one can build a conformal map onto a

bounded domain with non-locally connected boundary for which the the real part of

the conformal map is continuous, but the imaginary part is not. See Figure 5. One can

even build a conformal map where the real part is continuous and the imaginary part

does not have a continuous extension to any boundary point! Unfortunately, taking

harmonic conjugation simply does not preserve the property of having continuous

boundary values.

However, conjugation does preserve cetain types of continuity. We say that a

function f is α-Hölder if there is a C <∞ so that

|f(x)− f(y)| ≤ C|x− y|α.

More generally, the modulus of continuity of a function f is an increasing function η

on [0,∞) so that

|x− y| ≤ t ⇒ |f(x)− f(t)| ≤ η(t).
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Thus Hölder functions have modulus of continuity which is O(tα). It turns out that

if the boundary values of a harmonic function have a “good enough” modulus of

continuity then the harmonic conjugate also has continuous boundary values. The

sharp result is that the modulus of continuity satisfies a Dini condition

∫ 1

0

η(t)
dt

t
< infty.

For our purposes, we will deal with a stronger requirements that the function is

Hölder.

Lemma 123. Suppose u is a harmonic function on D and 0 < α < 1. Then u

extends continuously to a α-Hölder funtion on the boundary iff

sup
zD

|∇u|(1− |z|)1−α <∞.(46)

This holds for u iff it also holds for any harmonic conjugate.

Proof. First suppose (46) holds. Then if z, w lie on the same radius with |z| <
|w|,

|u(z)− u(w)| ≤
∫ |w|

|z|
|∇u(tz/|z|)|dt = O(|z|α),

and if |z| = |w| then

|u(z)− u(w)| ≤ O(|w − z|(1− |z|)α−1).

Together these imply that the image of Carleson square with base I has diameter

at most O(|I|α), which implies u extends to be α-Hölder on the closed disk (and in

particular on the boundary).

For the other direction, suppose u has α-Hölder boundary values f . Suppose

z, w ∈ D are hyperbolic distance ≤ 1 apart. Then there is a Möbius transformation τ

that maps z to w and moves a point eiθ ∈ T by at most O(|z−eiθ|) (in the Eucludean

metric). Let Pz denote the Poission kernel, I ⊂ T the arc centered at z/|z| of length
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1− |z| and λI the centric arc of length λ|I| (or the whole circle if λ|I| ≥ 2π). Then

|u(z)− u(w)| = |
∫

T

f(eiθ)Pz(e
iθ)dθ −

∫

T

f(eiθ)Pz(e
iθ)dθ|

= |
∫

T

[f(eiθ)− f(τ(eiθ)]Pz(e
iθ)dθ|

≤
∫

I

|f(eiθ)− f(τ(eiθ)|Pz(eiθ)dθ

+
∞∑

n=1

∫

2nI\2n−1I

|f(eiθ)− f(τ(eiθ)|Pz(eiθ)dθ

≤ O((1− |z|)α) +
∞∑

n=1

O(2n(1− |z|))α2−n)

= O((1− |z|)α)
∞∑

n=1

2α−1

= O((1− |z|)α)

Thus u is a harmonic function which oscilates by less than O((1−|z|)α) on a Euclidean

ball of radius ≈ (1− |z|) around z. Thus

|∇u(z)| = O(
(1− |z|)α
1− |z| ) = O((1− |z|)α−1).

�

The same proof works for Dini continuous. Note that the proof breaks down for

α = 1 because the sum
∑∞

n=1 2
α−1 diverges. In this case, we should note that the

infinite series really only has O(| log(1− |z|)|) terms in, each of which is O(1). Thus

if u is Lipschitz (i.e., 1-Hölder), the conjugate funtion need only have modulus of

continuity η(t) = t log 1
t
, and examples such as u(eiθ) = |θ| show this is sharp.

Every continuous function on the unit circle, T, can be extended to a harmonic

function on the unit disk using the Poission integral formula

u(z) =

∫

T

f(eiθ)Pz(θ)dθ,

where

Pz(θ) =
1

2π

1− |z|2
|eiθ − z|2 =

1− |z|2
1− 2|z| cos(θ − arg(z)) + |z|2 = ℜ(e

iθ + z

eiθ − z
).



298 10. THE CONJUGATION OPERATOR

The last formula is the real part of a holomorphic function and hence the harmonic

conjugate of the Poission kernel is the imaginary part of this function,

Qz(θ) = ℑ(e
iθ + z

eiθ − z
) =

2|z| sin(arg(z)− θ)

1− 2|z| cos(arg(z)− θ) + |z|2 .

If z = r ր 1 along the positive real axis then this becomes

lim
r→1

2r sin θ

1− 2r cos θ + r2
=

sin θ

1− cos θ
= cot

1

2
θ.

Using the double angle formulas sin 2φ = 2 sinφ cosφ and cos 2φ = cos2 φ − sin2 φ

with φ = θ/2 converts the right hand side to

=
2 sin θ

2
cos θ

2

1− cos2 θ
2
+ sin θ

2

=
cos θ/2

sin θ/2
= cot θ/2.

Thus the harmonic conjugation operator on the circle should given by

f̃(eiθ) =
1

2π

∫
cot(

θ − φ

2
)f(φ)dφ.(47)

However, the integral in this formula is not defined;
∫ π
0
| cot θ|dθ = ∞ since cot θ has

a 1/θ singularity at the origin. Thus the integrand is not integrable in general. We

resolve this in the usual way, by interpreting the integral as a principle value

f̃(eiθ) = lim
ǫ

1

2π

∫

|φ−θ|>ǫ
cot(

θ − φ

2
)f(φ)dφ,

when this limit exists. If f is merely continuous, then this limit need not exist

for every θ (although it is a theorem that it exists almost everywhere, even if f is

only integrable). However, if f is Hölder continuous then the principle value exists

everywhere and agrees with the boundary values of a harmonic conjugate of f ’s

harmonic extension. More precisely,

Lemma 124. Suppose 0 < α < 1 and f is α-Hölder continuous on T. Let u be its

Poisson extension to the disk and let v the harmonic conjugate of u which vanishes

at the origin. Then

f̃(eiθ) = v(eiθ),

in the sense that the left hand side exists as a principle value at every point and the

right hand side is the continuous extension to the boundary given by Lemma 123.
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Proof. Since cot θ is odd,∫

ǫ<|φ−θ|<δ
cot(

θ − φ

2
)dφ = 0,

and so by multiplying this by f(θ) and subtracting gives

|
∫

ǫ<|φ−θ|<δ
cot(

θ − φ

2
)f(φ)dφ| = |

∫

ǫ<|φ−θ|<δ
cot(

θ − φ

2
)[f(φ)− f(θ)]dφ|

= O(

∫ δ

ǫ

tα−1dt = O(δα).

This implies the principle value exists. Moreover,

|f̃(eiθ)− 1

2π

∫

|φ−θ|>ǫ
cot(

θ − φ

2
)f(φ)dφ| = O(ǫα).

Since Qz(e
ıφ) = O(|θ − φ|−1) we also have

|v(reiθ)−
∫

|φ−θ|>ǫ
Qz(e

iφ)f(eiφ)dφ| = O(ǫα,

with a constant indpendent of r. Finally, since f is bounded on T andQr(θ) → cot θ/2

uniformly away from 1, we have

|
∫

|φ−θ|>ǫ
[cot((θ − φ)/2)−Qz(e

iφ)]f(eiφ)dφ| → 0.

Putting together these inequalities, we get |f̃(eiθ)− v(reiθ)| → 0 as r → 0. �

It is worth noting that we have placed extremely strong restrictions on the bound-

ary functions in order to have both the Poission extension and its harmonic conjugate

have continuous boundary values. If we start merely with an integrable function f

on the boundary, then there is no difficulty defining a harmonic extension u on the

disk using the Poission integal formula. If f is continuous on T, then u will extend

continuously to D and agree with f on T. For a general f ∈ L1, u need not have a

continuous extension anywhere on the boundary, but it does have radial limits that

agree with f almost everywhere, i.e.,

lim
rր1

u(reiθ) = f(eiθ),

except on a set of Lebesgue measure zero. Similarly, if f ∈ L1, then the harmonic

conjugare v of u has radial limits almost everywhere and these agree with the principle

value in (47), which we can also show exists almost everywhere. In partciular, if

f ∈ L1, then f̃ is a well defined function almost everywhere on the circle. These
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results are a little more difficult and require the Hardy-Littlewood maximal theorem.

Since Lp(T) ⊂ L1(T), we see that we can define f̃ for any f ∈ Lp. It is a famous

result of M. Riesz that

‖f̃‖p ≤ Cp‖f‖p, 1 < p∞,

although the result fails for p = 1,∞ (we have aready seen a continuous function f

so that f̃ is unbounded. There are substitute results at the endpoints. If f ∈ L1,

then f̃ is in a space called weak L1, i.e., it satisfies the inequality

|{θ : |f̃(eiθ)| > λ}| = O(
‖f‖1
λ

).

if f ∈ L∞, then f̃ is in a space called BMO (for Bounded Mean Oscillation) defined

by

‖f‖BMO = sup
I
mI(f −mI(f)) <∞,

where mI(f) is the mean value of f over I,

mI(f)−
1

|I|

∫

I

f(x)dx.

This space is of fundatmental importance in the study of singular integrals, such as

the conjugate operater, althoug we shall not say much about it here.

The conjugate function has a simple expersssion in terms of Fourier series. Note

that

Pr(θ) + iQr(θ) =
1 + reiθ

1− reiθ
= 1 + 2

∞∑

n=1

rneinθ.

Since Pr and Qr are real valued

Pr = 1 + 2
∞∑

n=1

rnℜ(einθ) = 1 + 2
∞∑

n=1

rn
1

2
[einθ + einθ],

and hence

Pr(θ) =
∞∑

n=−∞
r|n|einθ.

Similarly,

Qr = 2
∞∑

n=1

rnℑ(einθ) = 1 + 2
∞∑

n=1

rn
1

2i
[einθ − einθ],

so,

Qr(θ) =
∑

n 6=0

(−i) n|n|r
|n|einθ.
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Suppose that f on the unit circle has Fourier series
∞∑

n=−∞
ane

inθ.

If f is real valued, then a−n = an. Thus the Poisson extension u of f is given by

u(reiθ) = Pr ∗ f(θ) =
∞∑

n=−∞
anr

|n|einθ,

and the harmonic conjugate v which vanishes at 0 is

v(reiθ) = Qr ∗ f(θ) =
∑

n 6=0

n

|n|anr
|n|einθ.

Thus the Fourier series of f̃ is ∑

n 6=0

n

|n|ane
inθ.

Even if f and f̃ are continuous, the Fourier series need not converge everywhere

(one of the great theorems of the twentieth century is Carleson’s theorem that the

Fourier series of a continuous function converges pointwise to that function almost

everywhere). However, the theory of Fourier series gives several methods to recover

a continuous function from its Fourier series, such as Cesaro summation.

2. Theodorsen’s method

We assume that the domain Ω is starshaped with respect to the origin. This

means that the boundary can be parameterized by a function in polar coordinates,

i.e.,

γ(z) = ρ(arg(z))z,

for some positive, 2π-periodic function ρ on [0, 2π. The mapping γ : T → ∂Ω is not

necessarily holomorphic there is a homeomorhism h : T → T so that γ ◦ h are the

boundary values conformal map (just take h = γ−1 ◦ f). But how do we compute h

without knowing the conformal map f?

Think of the homeomorphism h as a perturbation of the identity, i.e.,

h(eiθ) = exp(iθ + iδ(θ)).

If γ ◦ h has a holomorphic extgension f to the the disk, and this extension vanishes

at the orgin then f(z)/z is non vanishing. Thus g(z) = log(f(z)/z) is a well defined
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holomorphic function on the disk and its boundary values satisfy ℑg = K(Reg). Here

we are using K to denote the conjugation operator, Kf = f̃ . But unwinding the

definitions this becomes

δ(θ) = K(log |ρ(θ + δ(θ)|),
which is Theodorsen’s equation. Thus the desired h is θ + δ(θ) where δ is a fixed

point of the map

δ → K(log |ρ(θ + δ(θ)|),
which we find by starting with the identity δ0(θ) = θ) and iterating

δk+1 = K(log |ρ(θ + δk(θ)|).
This iteration will converge to the fixed point if, for example, the map is a contraction

map. The conjugation operator is an isometry on L2, so this occurs if

‖ρ(θ + δ1(θ)− ρ(θ + δ2(θ)‖2 < λ‖δ1 − δ2‖2,
for some λ < 1. If ρ is smooth then by the mean value theorem

ρ(θ + δ(θ)) = ρ(θ) + ρ′(φ)δ(θ),

for some φ and hence

‖ρ(θ + δ1(θ)− ρ(θ + δ2(θ)‖2 ≤ 2(max ρ′)‖δ1 − δ2‖2.
In particular, if ρ′ is small (and so if ρ is close to constant), the iteration will converge.

I do not know if anything is known about convergence in general.

The iteration can be performed by discreitizing [0, 2π] into n points and using

a discrete aproximation to the convolution in 5) or using a FFT to find the Fouier

expansion of log ρ(θ + δk(θ)) and then using (5) and an inverse FFT to compute δk

(which is faster).
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Figure 1. The top left shows the intial guess in Theodorsen’s
method; their are 200 points spread along the curve γ with equally
spaced arguments. The top right figure shows the result after 1 step of
the iteration. The next two figures show the results after 10 and 100
steps. The bottom figure shows the Schwarz-Christoffel image where
we used the 200 equally spaced parameters on the unit circle and an-
gles derived from the 100th iteration. If we have computed the images
of these points correctly, the SC image should agree closely with the
Theodorsen solution (which it does).
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3. Fornberg’s method

Suppose Ω is bounded by a smooth curve Γ which is parametreized by a map

γ : T → Γ. Given N , Fornberg’s method is a way to approximate (N/2) terms of the

power series of the conformal map onto Ω, by approximating the points on Γ where

the Nth roots of unity are mapped. This is done by a iterative procedure, where

each step of the iteration requires solving an N ×N linear system. Since the method

approximates the power series, it can only be applied for domains and values of N

where we expect this to give a good approximation to the map. However, in these

cases Fornberg’s algorithm has several nice properties:

(1) Once we are near a solution, the convergence of the iteration is quadratic.

(2) The linear system one needs to solve has well clustered eigenvalues, so an

iterative method such as the conjugate gradient method works well.

(3) The matrix in the linear system is a combination of diagonal matrices and

the discrete Fourier matrix, so can be applied using FFT’s in N logN time.

As in Theodorsen’s method, we know there is a homeomorphism h : T → T so

that γ ◦ h are the boundary values of a conformal map f : D → Ω and we wish to

find such an h. More specifically, we seek to evaluate h at the Nth roots of unity.

Fornberg’s method is to start with an inital guess for the values of h at the roots

of unity and then set up a system of equations to find correction terms. The initial

system is replaced by a linear approximation which is then solved. The process can

be iterated and the will give quadratic convergence to the correct values in favorable

cases. add corrections terms image points.

What is this system of equations. The basic idea is to take the Discrete Fourier

Transform of the current guess. This produces a polynomial of degree N − 1 so that

zk =
N−1∑

j=0

cj(wk)
j, k = 0, . . . N − 1,

where {wk} are the Nth roots of unity and {zk} = {γ(h(wk))} ⊂ Γ are the current

guesses for the conformal images of the roots of unity. By definition, an Nth root of

unity satisfies wNk = 1, so wjk = wj−Nk . Using this, we will convert our polynomial
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into a Laurent series by converting the N/2 highest degree terms to negative terms

zk =
0∑

j=−(N/2)+1

djw
j
k +

N/2∑

j=1

cj(wk)
j,

where dj = cj+N for j < 1 and d0 = c0. If this Laurent series is supposed to represent

a homolomorphic map, then all the negative powers should have coefficient zero. We

also want to set the constant term, d0 = c0 equal to zero in order for the map to send

0 to 0.

How do we modify h so that the negative coefficients become zero? We can use

an inverse discrete Fourier transform to compute these coefficients as

dk =
1

N

N−1∑

j=0

zjw
−k
j .

We want to move the zk along Γ so as to make all these sums zero for non-positive

indices k. Instead of moving zk along Γ, think of moving it along the tangent line to

Γ at zk. Thus our new guess for zk will be of the form zk+ γ
′(zk)tk, where tk is a real

number. We want to choose the N values {tk}N−1
0 so that

0 =
1

N

N−1∑

j=0

(zj + γ′(zj)tj)w
−k
j ,

or

dk = − 1

N

N−1∑

j=0

γ′(zj)tjw
−k
j .

This is a linear system of the form

y = At,

where y is a N/2 complex vector, A is a (N/2)×N matrix and t is a N real vector.

More precisely we have




d0
d1
d2
...

d1−N/2




= − 1

N




γ′0 γ′1 γ′2 · · · γ′N−1

γ′0 γ′1w γ′2w
2 · · · γ′N−1w

N−1

γ′0 γ′1w
2 γ′2w

4 · · · γ′N−1w
2(N−1)

...
...

...
...

...
γ′0 γ′1w

N/2−1 γ′2w
N−2 · · · γ′N−1w

(N/2−1)(N−1)







t0
t1
t2
...

tN−1



.(48)
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This is not a square system because the vector on the left hand side is comple and the

vector on the right is real. Thus each row really represents two real linear equations;

the real and imaginary parts. Thus we can rewrite the system as a real N×N system.

We then solve this system for {tk} and compute the points {zk+γ′(zk)tk}. These
points are not on the curve Γ, but since Γ is smooth, the distance of these points

to Γ is O(t2k) and we project them onto the curve to find the updated {zk}’s. One

way to do this is update the value of h(wk) by adding tk to argument of the current

value. In Fornberg’s paper [] he considers curves given by an equation of the form

Γ = {(x, y) : f(x, y) = 0} and he uses Newton’s method starting at zk + γ′(zk)tk to

find a point on Γ. Regardless of how the point on the tangent lines is mapped to a

point on the curve, this completes the iteration. The whole procedure can then be

repeated until it converges to a collection of points {zk} on Γ which are the images of

the N roots of unity under a degree N
2
−1 polynomial. This polynomial if Fornberg’s

approximation to the power series for f , the conformal map from D to Ω.

The linear system described above may seem a bit unwieldy, but in fact it is

quite highly stuctured and can be quickly applied to a vector using the Fast Fourier

Transform. Note that (48) can be written

−d =
1

N
FD0s0 +

1

N
WFD1s1,(49)

where

d =




d0
d1
d2
...

d1−N/2



, s0 =




t0
t2
t4
...

tN−2



, s1 =




t1
t3
t5
...

tn−1



,

W =




w
w2

w3

. . .

wN/2−1



,

D0 =




γ′0
γ′2

γ′4
. . .

γ′N−2)



,
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D1 =




γ′1
γ′3

γ′(z5)
. . .

γ′N−1




and F is the discrete Fourier transform matrix corresponding to the N/2nd root of

unity w2,

F =




1 1 1 · · · 1
1 w2 w4 · · · wN−2

1 w4 w8 · · · w2(N−2)

...
...

...
...

...

1 wN−2 w2(N−2) · · · w2(N/2−1)2




However, (49) is not quite a standard linear equation, since the left hand side is

a complex vector and the desired solution is a pair of real vectors. If we solve this

system for s1 in terms of s0 we get

s1 = D−1
1 F−1W−1(FD0s0 − d),

where the inverses of the diagonal matrices are easy to compute and the inverse of the

Fourier matrix can be applied in N logN time. Moreover, if there is a real solution

(s0, s1) of (49), then we must have

s1 = ℜ(D−1
1 F−1W−1(FD0s0 − d)),

Similarly,

s0 = ℜ(D−1
0 F−1(WFD1s1 − d)).

Thus we must have

s0 = ℜ(D−1
0 F−1(WFD1(ℜ(D−1

1 F−1W−1(FD0s0 − d)))− d)).

This looks complicated, but if we set

R = ℜ( 2
N
D−1

0 F−1WFD1),

A = RRT ,

G = 1− A,

b = ℜ(D−1
0 F−1(WFD1(ℜ(D−1

1 F−1W−1(d))) + d)).

then it becomes

Gs0 = b.
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Moreover A = RRT and hence G are symmetric, positive semi-definite, so that the

conjugate gradient method can be applied.

In his paper, Fornberg reports that in all the examples he tested, the matrix G

had one eigenvalue close to zero and all other eigenvalues clustered close to one. By

throwing away one row and column of G is thus obtained a N−1×N−1 system with

all eigenvalues clustered near 1. In a later paper Wegman , explained the Fornberg’s

empirical observations using his solution of the numerical mapping problem via the

Riemann-Hilbert equation. We will discuss this later.

4. Wegman’s method

The starting point of Wegman’s method is the same as Fornberg’s method; we

have a parameterization γ : T → Γ = ∂Ω and we seek a homeomorphism h : T → T

so that γ ◦ h has a holomorphic extension to the disk. In Fornberg’s method we test

this by computing the Laurent expansion of our current guess for γ ◦ h and then

modifying h to make the negative coefficients zero.

In Wegman’s method, if γ ◦ hk does not have a holomorphic extension, then we

let eiβ(t) denote the tangent of Γ at ζ(t) = γ(hk(t)) and choose a real valued function

u(t) so that

Ψ(t) = ζ(t) + u(t)eiβ(t),(50)

is the boundary value of a holomorphic function. If we can find such a u, then set

hk+1 = hk + u.(51)

The main point is then whether such a u exists and how to compute it. We can

rewrite (50) as

e−iβ(t)Ψ(t) = e−iβ(t)ζ(t) + u(t),

and since u is real valued,

ℑ(e−iβ(t)Ψ(t)) = ℑ(e−iβ(t)ζ(t))

or

ℜ(e−iβ(t)(−i)Ψ(t)) = ℑ(e−iβ(t)ζ(t))
or

ℜ(e−iβ(t)Φ(t)) = g(t),(52)
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where Φ(t) = −iΨ(t) is in H2 and g(t) = ℑ(e−iβ(t)ζ(t)) is real. Thus the desired u

exists if, given g and β, there is an analytic Φ satisfying (52). This is an example of

a Riemann-Hilbert problem. Moreover, if we can compute Ψ, then we can compute

u by rewriting (50) as

u = e−iβ(Ψ− g).(53)

Suppose Φ were a holomorphic solution of (52). Let α(t) = K[β(t) − t], so that

(β+ iα)/z has a holomorphic extension to the disk. Thus (β+ıα) has a holomorphic

extension which vanishes at the origin. Hence e−iβ+α is holomorphic and so e−iβ+αΦ

is holomorphic, so

ℑ(e−iβ+α)Φ) = K[ℜ(e−iβ+αΦ)].
Since eα is real valued, this is the same as

eαℑ(e−iβΦ) = K[eαℜ(e−iβΦ)] = K[eαg],

or

ℑ(e−iβ)Φ) = e−αK[eαg].

Thus

e−iβΦ = ℜ(e−iβΦ) + iℑ(e−iβΦ) = g + ie−αK[eαg],

or

Φ = eiβ(g + ie−αK[eαg]) = eiβ−α(eαg + iK[eαg]).(54)

The right hand side is clearly a product of holomorphic functions, so this defines a

holomorphic solution of (52). Together, equations (51), (53) and (54) give a formula

for computing hk+1 from γ and hk, and since, by smoothness, the curve Γ differs only

quadratically from its tangent line, the sequence {γ ◦ hk} converges quadratically to

the desired conformal map (once we are close enough to the correct answer). If we

use FFT’s to compute the necessary conjugate functions, then clearly we only need

o(n log n) to compute each iteration.

5. Comparing wegman’s and Fornberg’s methods

Wegman’s method is to solve a Riemann-Hilbert problem directly using the con-

jugate function to define the solution. However, he also shows that same solution
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occurs for a linear system

(I +R)u = g,

where

g = −ℜ(e−iβ(I − iK + J)ζ),

and

Ru = ℜ(e−iβ(J − iK)[eiβu],

where K is the conjugate operator and J maps a function to its mean value. The

operator R can also be written as an integral operator with kernel

R(t, s) = − 1

2π

sin(β(t)− β(s)− (t− s)/2)

sin((t− s)/2)
.

Wegman shows that ‖R‖ ≤ 1, that −1 is a simple eigenvalue of R, and 1 is not

an eigenvalues and that the remaining eigenvalues cluster rapidly around 0 if Γ is

smooth.

Wegman shows that Fornberg’s G matrix is a discretization of the operator I−R2.

By our previous remarks, I−R2 has one zero eigenavalue and the rest cluster quickly

around 1. Thus Fornberg’s emperical observations about the eigenvalues of his G

matrix are explained by Wegman’s analysis of his own method.



CHAPTER 11

Higher dimensions

1. Liouville’s theorem

2. Hamilton’s theorem

3. Spectral geometry
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CHAPTER 12

Higher conenctivity

1. The uniformization theorem

2. Koebe’s theorem

3. Koebe’s conjecture

4. Slit mappings
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CHAPTER 13

Circle packings

No method of computing conformal mappings is as appealing to the eye or in-

tuition as the circle packing method, introduced by Thurston and implemented and

studied by Stephenson and his students. Here we take the idea that conformal maps

preserve infimitesimal circles and consider maps that preserve actual circles of posi-

tive radius. Given a domain we pack it with disjoint circles and prove that there is

an essentially unique packing of the unit disk by circles that have the same tangentcy

relations as the given packing. This map between circle packings induces a quasi-

conformal map between the domains, which converges to a conformal map when the

original packing consists of “small enough” circles.

We do not have the space here to recreate the whole theory of circle packings,

but we shall sketch the proofs circle packing maps exist, converge to conformal maps

and describe an algorithm for computing these maps.

1. Definitions

2. The Perron method

3. The hexagonal packing is rigid

4. Packing maps converge to conformal maps
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CHAPTER 14

Conformal Welding

1. The fundamental theorem

2. Koebe’s theorem and conformal welding

3. Marshall’s Zipper algorithm

4. SLE

We saw above that Brownian motion has a close conenction to harmonic measure,

conformal invariants and conformal maps. One of the most important and intriguing

applications of conformal maps has been to the theory of random simple curves. This

is currently rather technical topic to discuss in detail, but it is so important that we

should at least draw a few pictures.

Suppose κ > 0 and let a = 1
2
(1−

√
κ/(16 + κ)). Let

f1(z) = (z − a)a(z − (a− 1))1−a,

f2(z) = (z + a)a(z + (a− 1))1−a.

Each of these maps sents the upper half-plane into itself minus a slit at 0. In each

case, two points are mapped to the the origin. For f1 these points are a, 1 − a and

for the second they are −a, and a− 1. Now iterate these maps at random.
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Figure 1. given three points on the real line there is an explicit map
of the upper half-plane to a slit half-plane which sens the center point
to the tip of the slit and maps both the outer points to the origin, as
shown in this figure. By randomly selecting the points to be identified,
and composing the corresponding maps, we create a random path in
the upper half plane.
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Figure 2. SLE paths for κ = 2, steps = 10,100, 1000.
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Figure 3. SLE paths for κ = 2, 4, 6, 10, steps = 1000.





CHAPTER 15

The Schwarz-Christoffel formula (again)

1. Circular-arc polygons

2. Multiple connected domains

3. Black box solvers

321





CHAPTER 16

Conformal mapping in linear time

1. The idea

2. Thick and thin parts of a polygon

3. Arches

4. Building approximate bending laminations

5. Angle scaling is continuous

6. The algorithm
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CHAPTER 17

Conformal maps and martigales

1. The Bloch space and Nehari’s theorem

2. Bloch functions and Bloch martingales

3. Radial limits of conformal maps

4. Makarov’s upper bound

5. The law of the iterated logarithm
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APPENDIX A

Some domains used in the text

{2 − I, 2, 3 + I, 4 + I, 4 + 2I, 3 + 2I, 3 +
3I, 2+3I, 2+2I, 1+ I, I, 3I,−1+3I,−1+
2I,−2+2I,−2+I,−1+I,−1,−2,−2−I}
Figures ??, ??, 8, 4, ??, 4

{10 + 2I, 10, 12, 12 + 4I, 8 + 4I, 8 + 6I, 6 +
6I, 6 + 4I, 4I, 2I}
Figures ??, 22, 25, 27

{3−2I, 3+I, 3−2I, 5−2I, 5+2I, 1+2I, 1−
I, 1 + 2I,−3 + 2I,−3 − I,−3 + 2I,−5 +
2I,−5− 2I,−1− 2I,−1 + I,−1− 2I}
{{7, 15, 16}, {1, 7, 16}, {1, 2, 7}, {2, 6, 7}, {2, 5, 6}, {2, 4, 5}, {
Figures 26 29 .
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{0, 2, 2 + 3I, 1 + 3I, 1 + I, I}
{{1, 2, 5}, {2, 3, 5}, {3, 4, 5}, {5, 6, 1}}
Figures 33, 34, 25, 27

Program for compuing vertices is given in
Appendix ??.
triVK= 5, 21, 29, 5, 13, 21, 5, 29, 45, 29,
37, 45, 1, 2, 48, 2, 3, 4, 46, 47, 48, 46, 48,
2, 2, 4, 46, 4, 5, 46, 5, 45, 46, 9, 10, 8, 10,
11, 12, 6, 7, 8, 6, 8, 10, 10, 12, 6, 12, 13, 6,
13, 5, 6, 17, 18, 16, 18, 19, 20, 14, 15, 16,
14, 16, 18, 18, 20, 14, 20, 21, 14, 21, 13,
14, 25, 26, 24, 26, 27, 28, 22, 23, 24, 22,
24, 26, 26, 28, 22, 28, 29, 22, 29, 21, 22,
33, 34, 32, 34, 35, 36, 30, 31, 32, 30, 32,
34, 34, 36, 30, 36, 37, 30, 37, 29, 30, 41,
42, 40, 42, 43, 44, 38, 39, 40, 38, 40, 42,
42, 44, 38, 44, 45, 38, 45, 37, 38;
Figures ??, ??, ??, 10, refVK2offcenter

This is a 1× π/2 rectangle with half-disks
attached to each shorter side. In most ex-
amples this is approximated by a 40-gon
with 10 edges approximating each circular
arc and straight edge.
Figures 26, ??,
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makevert34=(

vert34={1}; n1=20; n2=20; n3=10;

Do[ AppendTo[vert34,2+1 Exp[I (Pi - (3/2)Pi k/n1)]],{k,1,n1}];

Do[ AppendTo[vert34,2-2 I + Exp[ I ((Pi/2) +Pi

Do[ AppendTo[vert34,2+3 Exp[I (Pi - (3/2) Pi

Do[ AppendTo[vert34,-2+ Exp[I (3/2) Pi(-k/n1)]],{k,1,n2}];

Do[ AppendTo[vert34,-2+2 I + Exp[ I ((-Pi/2) +Pi

Do[ AppendTo[vert34,-2+ 3 Exp[I (3/2) Pi(-k/n1)]],{k,n2,1,-1}];

vert34=N[vert34];

)

Figures 27, ??,
{9 − 7I, 9 − 5I, 1 − 5I, 9 − 5I, 9 − 3I, 1 −
3I, 9−3I, 9−I, 1−I, 9−I, 9+I, 1+I, 9+
I, 9 + 3I, 1 + 3I, 9 + 3I, 9 + 5I, 1 + 5I, 9 +
5I, 9+7I, 1+7I, 9+7I, 9+9I,−9+9I,−9+
7I,−1+7I,−9+7I,−9+5I,−1+5I,−9+
5I,−9+3I,−1+3I,−9+3I,−9+ I,−1+
I,−9 + I,−9 − I,−1 − I,−9 − I,−9 −
3I,−1−3I,−9−3I,−9−5I,−1−5I,−9−
5I,−9− 7I,−1− 7I,−9− 7I,−9− 9I, 9−
9I, 9− 7I, 1− 7I}
Figures 33, ??,

{1, 5 + 4 I, 5 - 4 I, 6 - 4 I, 6 + 6 I, -4 + 6
I, -4 + 5 I, 4 + 5 I, I, -1, -5 - 4 I, -5 + 4 I,
-6 + 4 I, -6 - 6 I, 4 - 6 I, 4 - 5 I, -4 - 5 I, -I}
Figures 5
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{1, 3 + 2 I, 3 - 2 I, 4 - 2 I, 4 + 4 I, -2 +
4 I, -2 + 3 I, 2 + 3 I, I, -3 + 4 I, -4 + 3 I,
-1, -3 - 2 I, -3 + 2 I, -4 + 2 I, -4 - 4 I, 2 -
4 I, 2 - 3 I, -2 - 3 I, -I, 3 - 4 I, 4 - 3 I}
Figures 5

Asmooth starshaped region with radius
given by

θ → 1

5
(
1

2
sin(7θ) + sin(3θ) + 4)eiθ).

Figures 11

{2, 4, 4 + 2 I, -4 + 2 I, -4 - 6 I, -6 I, -2 I,
2 - 2 I, 2 - 4 I, 4 - 4 I, 4, 2}
Figures 23 , 13, 17

This has ten equally spaced vertices oneach
of the cirles of radius 1 and 2 around the
origin. Figures 35
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{0.92388 + 0.382683 I, 2.12132 + 2.12132
I, 0.382683 + 0.92388 I, 0. + 3. I, -
0.382683 + 0.92388 I, -2.12132 + 2.12132
I, -0.92388 + 0.382683 I, -3., -0.92388 -
0.382683 I, -2.12132 - 2.12132 I, -0.382683
- 0.92388 I, 0. - 3. I, 0.382683 - 0.92388
I, 2.12132 - 2.12132 I, 0.92388 - 0.382683
I, 6.07612 - 0.382683 I, 4.87868 - 2.12132
I, 6.61732 - 0.92388 I, 7. - 3. I, 7.38268
- 0.92388 I, 9.12132 - 2.12132 I, 7.92388
- 0.382683 I, 10., 7.92388 + 0.382683 I,
9.12132 + 2.12132 I, 7.38268 + 0.92388 I,
7. + 3. I, 6.61732 + 0.92388 I, 4.87868 +
2.12132 I, 6.07612 + 0.382683 I}
Figures 5

This is four circular arcs of radius
√
2 cen-

tered at the points ±2, ±2i. each arc is
discrtized by 25 points
Figures ??

This is a smooth starshaped domain where
the radius is given by

r(θ) =
1

2
(sin(3x) + 4).

Figures 1
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A 2× 1 ellipse. Figures 1



APPENDIX B

Some Mathematica code

This prints a polygon when the vertices are given as a list of pairs of real coordi-

nates.

plotpoly[vertlist_]:=

Show[Graphics[

{

GrayLevel[1],Thickness[.01], {Polygon[vertlist] } ,

GrayLevel[0],Thickness[.01], {Line[vertlist] }

},

{PlotRange -> All, Axes -> None, AspectRatio -> Automatic}]];

This plots a polygon when the vertices are given as a list of complex numbers.

ctor[z_]:=(

output={};

Do[ AppendTo[output,{Re[z[[k]]],Im[z[[k]]]}] ,{k,1,Length[z]}];

output

);

plotpolyC[vert_]:=(

vert1=ctor[vert];

vert2=AppendTo[vert1,vert1[[1]] ];

plotpoly[vert2];

);

This prints a list of ploygons given as lists of complex numbers

plotpolylistC[vert_]:=(

vert3={};

Do[
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vert1=ctor[vert[[k]]];

vert2=AppendTo[vert1,vert1[[1]] ];

AppendTo[vert3,vert2];

,{k,1,Length[vert]}];

plotpolylist[vert3];

);

This takes two triples of complex numbers and computes the Beltrami coefficient

of the affine map which sends the three vertices of the first to the three vertices of

the second. It is assumed that the orientation of the triangles is the same in both

cases.

comparetri[data1_,data2_]:=(

(* map the first two points of each triangle to 0,1 by conformal linear

map and compute image of third point *)

z=data1[[1]];

w=data1[[2]];

x=data1[[3]];

a= (x-z)/(w-z);

z=data2[[1]];

w=data2[[2]];

x=data2[[3]];

b= (x-z)/(w-z);

If[ Im[a] Im[b] < 0, output =-1];

If[ Im[a] Im[b] >0,(

mu=Abs[(b-a)/(Conjugate[a]-b)];

output = (mu+1)/(1-mu);

(* {a,b,mu,output}*)

)];

N[output]

);

Takes two (equal length) lists of triangles and computes the maximum value from

comparetri.



B. SOME MATHEMATICA CODE 335

findmaxcompare[data1_,data2_]:=(

max= -1;

comparelist={};

Do[

current=comparetri[data1[[k]],data2[[k]] ];

AppendTo[comparelist,current];

If[current > max, {max=current;maxk=k;}];

,{k,1,Length[data1]}];

max

);

Given two lists of vertices and one list of triples of vertex indices, compute two

lists of triangles in plane and compute maximum distortion

comparepolys[vert1_,vert2_,triangles_]:=(

tri1=Table[{

vert1[[triangles[[k,1]] ]],

vert1[[triangles[[k,2]] ]],

vert1[[triangles[[k,3]] ]]

}, {k,1,Length[triangles]}];

tri2=Table[{

vert2[[triangles[[k,1]] ]],

vert2[[triangles[[k,2]] ]],

vert2[[triangles[[k,3]] ]]

}, {k,1,Length[triangles]}];

findmaxcompare[tri1,tri2]

);

compute_iota takes a tree of disks and computes the Mobius maps from each disk

to its parent. These are stored as 2 by 2 matrices. The tree of disks data is in data1

which is a list of 4-tuples of the form z,r,p,q where z is a complex number giving the

center of the disk, r is a non-negative real giving the radius of the disk, p is an integer

giving the label of the parent disk and q is in 1,2,3,4 giving the type of edge (1 is
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vertex-vertex bisector, 2 is an edge-edge bisector, 3 is a vertex-edge bisector with the

vertex on the right and 4 is vertex-edge with vertex on the left.

After computing disk to parent maps, we compute the disk to root maps.

The we take the vertex list in data2 and each disk is mapped to the closest

boundary point of the nearest disk (for concave vertices this a disk whose boundary

contains v and for convex vertices it is the disk at the other end of the medial axis

edge ending at v).

computeiota[data1_,data2_]:=(

z=data1[[1,1]];

r=data1[[1,2]];

mat={{1,-z},{0,r}};

iota={};

tau={};

test={};

AppendTo[iota,mat];

AppendTo[tau,{{1,0},{0,1}}];

Do[(

z1=data1[[k,1]];

r1=data1[[k,2]];

p =data1[[k,3]];

t =data1[[k,4]];

z2=data1[[p,1]];

r2=data1[[p,2]];

r=Abs[z1-z2];

(* ------ case 1 ---------------*)

If[t==1,(

cosalpha=(r^2 -r1^2-r2^2)/(-2 r1 r2);

sinalpha=Sqrt[1-cosalpha^2];

eialpha=cosalpha + I sinalpha;

Ralpha={{eialpha,0},{0,1}};

costheta=(r1^2 -r^2-r2^2)/(-2 r r2);

sintheta=Sqrt[1-costheta^2];
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eitheta=costheta + I sintheta;

a=z2+r2 eitheta (z1-z2)/r;

b=z2+r2 Conjugate[eitheta] (z1-z2)/r;

sigma1={{1,-b},{1,-a}};

mat= Inverse[sigma1] . Ralpha . sigma1;

)];

(* ------ case 2, r1=r2 ---------------*)

If[(t==2)&&(r1==r2) ,(

eta={{1,-z1},{0,(z2-z1) r1 /r}};

A=r/r1;

w=(1-Exp[-A])/(1+Exp[-A]);

sigma1={{1,A},{0,1}} . {{1,-w},{-w,1}};

mat=Inverse[eta] . sigma1 . eta;

)];

(* ------ case 2, r1 < r2 ---------------*)

If[(t==2)&&(r1<r2)&&(r1>0) ,(

s=r1 r /(r2-r1);

z3=z1+s(z1-z2)/r;

eta={{1,-z3},{0,z1-z3}};

B=r1/Abs[z1-z3];

y=Abs[z2-z3]/Abs[z1-z3];

A=Log[y]/B;

w=(1-Exp[-A])/(1+Exp[-A]);

sigma1= {{y B ,y},{0,1}} . {{1,-w},{-w,1}} . {{1,-1},{0,B}};

mat=Inverse[eta] . sigma1 . eta;

)];

(* ------ case 2, r1 > r2 ---------------*)

If[(t==2)&&(r1>r2) ,(

s=r1 r /(r2-r1);

z3=z1+s(z1-z2)/r;

eta={{1,-z3},{0,z1-z3}};

B=r1/Abs[z1-z3];
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y=Abs[z2-z3]/Abs[z1-z3];

A=Log[y]/B;

w=-(1-Exp[A])/(1+Exp[A]);

sigma1= {{y B ,y},{0,1}} . {{1,-w},{-w,1}} . {{1,-1},{0,B}};

mat=Inverse[eta] . sigma1 . eta;

)];

(* ------------------- case 2 vertex ---------------------*)

If[(t==2)&&(r1==0),(

mat={{1,(z2-z1)(r-r2)/r},{0,1}};

)];

(* ---------------------- case 4 vertex on right--------------*)

If[t==4,(

costheta=(r1^2 -r^2-r2^2)/(-2 r r2);

sintheta=Sqrt[1-costheta^2];

eitheta=costheta + I sintheta;

a=z2+r2 eitheta (z1-z2)/r;

s=r1-r2;

L=Sqrt[r^2-s^2];

costheta=s/r;

sintheta=Sqrt[1-costheta^2];

eitheta=costheta + I sintheta;

c= z1+ r1 eitheta (z2-z1)/r ;

d= z2+ r2 eitheta (z2-z1)/r ;

astar=reflect[a,c,d];

eta= {{-I(c-a)/(c-astar) ,0},{0,1}} . {{1,-astar},{1,-a}};

cosalpha=(r^2 -r1^2-r2^2)/(-2 r1 r2);

sinalpha=Sqrt[1-cosalpha^2];

eialpha=cosalpha + I sinalpha;

alpha=ArcCos[cosalpha];

sigma1={{eialpha, -eialpha alpha},{0,1}};

mat= Inverse[eta] . sigma1 . eta;

)];
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(*---------------- case 3 vertex on left ---------------------*)

If[t==3,(

costheta=(r1^2 -r^2-r2^2)/(-2 r r2);

sintheta=Sqrt[1-costheta^2];

eitheta=costheta - I sintheta;

a=z2+r2 eitheta (z1-z2)/r;

s=r1-r2;

L=Sqrt[r^2-s^2];

cospsi=s/r;

sinpsi=Sqrt[1-cospsi^2];

eipsi=cospsi - I sinpsi;

c= z1+ r1 eipsi (z2-z1)/r ;

d= z2+ r2 eipsi (z2-z1)/r ;

astar=reflect[a,c,d];

eta= {{-I(c-a)/(c-astar) ,0},{0,1}} . {{1,-astar},{1,-a}};

cosalpha=(r^2 -r1^2-r2^2)/(-2 r1 r2);

sinalpha=Sqrt[1-cosalpha^2];

eialpha=cosalpha + I sinalpha;

alpha=ArcCos[cosalpha];

sigma1={{Conjugate[eialpha], Conjugate[eialpha] alpha},{0,1}};

mat= Inverse[eta] . sigma1 . eta;

)];

(* test that tau map disk to parent*)

AppendTo[test,{k,t,alpha}];

AppendTo[test,Abs[z2-eval[tau[[k]],z1+r1]]-r2];

AppendTo[test,Abs[z2-eval[tau[[k]],z1+I r1]]-r2];

AppendTo[test,Abs[z2-eval[tau[[k]],z1-I r1]]-r2];

),{k,2,Length[data1]}] ;

(* we have now created the iota map. Now we apply

it to the vertices. First associated each vertex

to a medial axis vertex disk and then apply the

iota map for that disk to the vertex *)
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data3=vert2data2[data1,data2];

out={};

Do[(

p=data3[[k]];

v=data2[[k]];

AppendTo[out,eval[iota[[p]],v]];

),{k,1,Length[data2]}];

out

);

vert2data this takes in a tree-of-disks array and a list of vertices as complex

numbers and and returns an equal length list with these points listed as disk num-

ber,angle. This output can then be used in the drawtraj routines .

vert2data[data1_,data2_]:=(

output={};

L1=Length[data1];

L2=Length[data2];

Do[

v=data2[[k]];

mindist=10000;

nearest=-1;

Do[

w=data1[[L1-j+1,1]];

r=data1[[L1-j+1,2]];

dist=Abs[v-w];

flag=verifyangle[data2,k,w];

If[(flag==1)&&(dist-r<=mindist+.0000001),(mindist=dist-r;nearest=L1+1-j;)];

(* If[(flag==1)&&((dist-r)==0),(mindist=dist;nearest=L1+1-j;)]; *)

,{j,1,L1}];

w=data1[[nearest,1]];

r=data1[[nearest,2]];

If[mindist+r>0,AppendTo[output,{nearest,Arg[v-w],mindist}]];

If[mindist+r==0,AppendTo[output,{nearest,0}]];
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,{k,1,L2}];

N[output]

);

vert2data2 also checks to see if the any of the vertices are zero radius medial

axis disks and if so assigns them to their parent

vert2data2[data1_,data2_]:=(

output={};

L1=Length[data1];

L2=Length[data2];

Do[

v=data2[[k]];

(* if v is a medial axis disk find correct index in data1

and set out to this index *)

flag1=0;

Do[If[v==data1[[j,1]], (

zparent=data1[[data1[[j,3]],1]];

flag2=verifyangle[data2,k,zparent];

If[flag2==1,{AppendTo[output,j];flag1=1;}]

)];

,{j,1,L1}];

(* if v is not a medial axis disk, then flag1 =0. In this

case, seach all medial axis disk and assign v to the

one for which v is closest to the boundary *)

If[flag1==0,(

mindist=10000;

nearest=-1;

Do[

w=data1[[L1-j+1,1]];

r=data1[[L1-j+1,2]];

If[Abs[v-w]==r,nearest=L1-j+1];

,{j,1,L1}];
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AppendTo[output,nearest];

)];

,{k,1,L2}];

output

);

Perform one iteration of the Koebe method.

koebe[data_]:=(

L = Length[data];

minabs=10000;

Do[

If[Abs[data[[k]] ]<minabs,(minabs=Abs[data[[k]] ];loc=k;)];

,{k,1,L}];

data1=shift[data,loc];

min=data1[[1]];

data2=N[diskmap[data1,min]];

zeroimage=diskmap[0,min];

data3=findsquareroot[data2];

zeroimage=findsquareroot2[data3,zeroimage];

data4=diskmap[data3,zeroimage];

shift[data4,2-loc]

);

Do n iterations of Koebe iteration and return the list of vertices.

iterkoebe[data_,n_]:=(

data6=data;

Do[ data6=koebe[data6]; ,{k,1,n}];

data6

);

Perform n iterations of Koebe iteration and store intermediate results. Plot the

resukts as an arrary.

ik[data_,n_]:=(

data8=Table[0,{k,1,n+1}];

data8[[1]]=data;
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data9=data;

closestpoint={};

Do[

data9=koebe[data9];

cols=4; skip=5;

If[Mod[k,skip]==0,(

j=(k)/skip;

translate= 2.5 (Mod[(j),cols] + -I Floor[(j)/cols]);

data8[[j+1]]=data9+ translate ;

AppendTo[closestpoint,Min[Abs[data9]]];

)];

,{k,1,n}];

plotpolylistC[data8]

) ;

Apply a circular shift to a list.

shift[data_,n_]:=(

L=Length[data];

data2={};

Do[

AppendTo[data2,data[[1+Mod[k-2+n,L] ]]];

,{k,1,L}];

data2

)

Find square root of a list of complexes which starts with 0 and is continuous

branch

findsquareroot[data_]:=(

data6={0};

AppendTo[data6,Sqrt[data[[2]] ] ];

Do[

z=data6[[k-1]];

w=Sqrt[data[[k]]];

If[Abs[Arg[w]-Arg[z]]< Pi/2, AppendTo[data6,w], AppendTo[data6,-w]];
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,{k,3,Length[data]}];

data6

)

findsquareroot2[data_, point_]:=(

argsum=0;

point2=Sqrt[point];

Do[

argsum=argsum+Arg[(data[[k]]-point2)/(data[[k+1]]-point2)];

,{k,1,Length[data]-1}];

If[Abs[argsum]<Pi, - point2, point2]

)

Find vertices of nth generation of von Koch snowflake.

makeKSvert[n_Integer?NonNegative]:=(

out= FixedPoint[

(#1/.Line[{start_,finish_}]

:>doline[start,finish])&,

{Line[{{Sqrt[3],0},{-Sqrt[3]/2,-3/2}}],

Line[{{-Sqrt[3]/2, -3/2},{-Sqrt[3]/2, 3/2}}],

Line[{{-Sqrt[3]/2, 3/2},{Sqrt[3],0}}]},

(*{Line[{{0,0},{1/2,Sqrt[3]/2}}],

Line[{{1/2, Sqrt[3]/2},{1,0}}],

Line[{{1,0},{0,0}}]},*)

n];

out=N[out];

out=Flatten[out];

vertVK={};

Do[ AppendTo[vertVK, out[[k,1,1,1]]+I out[[k,1,1,2]]]

,{k,1,Length[out]}];

vertVK = Conjugate[vertVK]

);



APPENDIX C

Bits and pieces

In this appendix we present some related results that may have been used or

mention in the text, but not fully discussed there.

1. Alternative definitions of quasiconformality

The metric definition: An orientation preserving homeomorphism Ω1 → Ω2 is

K-quasiconformal if for all x ∈ Ω1,

lim sup
r→0

maxy:|x−y|=r |f(x)− f(y)|
miny:|x−y|=r |f(x)− f(y)| ≤ K.

We shall see later that this is equivalent to only requiring the the liminf to be less

than K for all x.

Geometric definition: An orientation preserving homeomorphism Ω1 → Ω2

is K-quasiconformal if for every generalized quadrilateral Q in Ω1 , M(f(Q)) ≤
KM(Q).

Our first step is to show these definitions are equivalent. To prove “Metric ⇒”

Geometric” we need the following well known result.

Theorem 125 (Besicovitch covering lemma). Let E be a bounded set in R
n and

a covering by balls centered at points of E and such that each point of E is the center

of some disk. Then there is constant C = C(n) and a subcover {Bj} of E so that

each point of E is an at most C elements of the subcover.

Proof. We may assume the balls have bounded diameters, for otherwise simply

choose one large ball containing E. We essentially use a greedy algorithm, taking one

of largest balls not yet used. Let α1 be the supremum of the diameters of the balls

and choose B1 so that |B1| ≥ 3
4
α1. Let E1 = E \ B1 and let α2 be the supremum

of the diameters of balls centered at points of E1. Choose B2 so that |B2| ≥ 3
4
α2.

Continue in this way.

345
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Figure 1. Proof that there cannot be three balls containing x, all
with centers in same direction.

To check that the resulting collection has bounded overlap, take x ∈ E and

suppose x lies in Bj and Bk with k > j. Then |Bk| ≤ 4
3
|Bj| since it was chosen later.

Let xj, xk be the centers of Bj, Bk. Since xk 6∈ Bj and

|x− xk| ≤ |Bk| ≤
4

3
|Bj| ≤

4

3
|x− xj|.

If we are given three points xi, xj , xk so that the three segments [x, xi], [x, xj ] and

[x, xk] form three small angles at x, then since xi must be in 4
3
Bj \ Bj we see that

it must also lie in Bk, a contradiction. Thus if we connect x to the center of each

chosen ball containing it, no more than two segments can be within angle ǫ of each

other. The compactness of the unit sphere now proves there can only be a bounded

number of such balls containing x.

To see that {Bj} is a covering suppose x ∈ E is to covered. Then there is a ball

Bx centered at x which was never chosen. This implies αn ≥ 4
3
|Bx| for all n. But

then we have chosen an infinite number of bounded overlap balls, all with diameters

bounded away from zero and lying in a bounded set of Rn. This is contradiction, so

E must be covered. �

2. The Hardy-Littlewood maximal theorem

We say that a collection of balls {Bj} covers a set E in the sense of Vitali if each

point of E is contained in balls of the collection of arbitrarily small diameter.

Now suppose f : Ω1 → Ω2 satisifies the metric definition of K quasi-conformal.

Suppose Q is a generalized quadrialteral. Suppose it can be conformal mapped to
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a 1 × r1 rectangle R1 and its image, f(Q) can be mapped to a 1 × r2 rectangle R2.

Then f induces a map F between these rectangles which also satisfies the metric

defintion of K-quasiconformality (with the same K). Choose some H > K and for

every x ∈ R1 choose a ball, B(x, r) centered at x so that

max
y:|x−y|=r

|f(x)− f(y)| ≤ K min
y:|x−y|=r

|f(x)− f(y)|.

The conseqeunce that we shall use is that

πdiam(F (Bk)) ≤ H2area(f(Bk)).(55)

By the Besicovitch lemma we can extra a covering {Bk} of the interior of R1 so that

no point is in more than a bounded number of balls. Define a metric ρ on R1 by

taking

ρ(z) =
1

r2

∑

k

diam(F (Bk))

diam(Bk)
χ2Bk

(z).

Then any curve γ ∈ Γ, the family of paths which connect the two sides of length one,

and hits a ball Bk spends at least length diam(Bk) inside 2Bk. Thus∫

γ

ρds ≥ 1

r2

∑

k:γ∩Bk 6=∅
diam(Bk)

diam(F (Bk))

diam(Bk)
≥ 1

r2

∑

k:γ∩Bk 6=∅
diam(F (Bk)),

which is bigger than 1 since the image f(γ) connects the two sides of length 1 in R2

and so the sets f(Bk) that it hits must have diameters that sum to at least r2. Thus

ρ is admissible for Γ. Then
∫

R1

ρ2dxdy ≤
∑

k

1

r22
(
diam(F (Bk))

diam(Bk)
)2area(2Bk)

≤
∑

k

1

r22
(
diam(F (Bk))

diam(Bk)
)2πdiam(Bk)

2

≤
∑

k

π

r22
(diam(F (Bk))

2

≤
∑

k

1

r22
H2area(f(Bk))

≤
∑

k

1

r22
CH2area(R2)

≤
∑

k

CH2

r2
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Thus r2 ≤ CH2r1, which means the f is CH2-quasiconformal for the geometric

definiion.

Theorem 126 (Vitali covering lemma). Suppose E ⊂ R
n is bounded and covered

in the sense of Vitali by a collection of balls. Then there is a disjoint subcollection

{Bj} so that E \ ∪jBj has n-dimensional measure zero,

Proof. The proof similar to the one above. Choose an open set E ⊂ U with

Hn(U \ E) < ǫ and only consider the covering of E by balls inside U . Let α1 be the

supremum of the diameters of these balls and choose B1 so that |B1 ≥ α1/2. Let α2

be the supremum of the diameters of the balls in U which are disjoint from B1 and

choose B2 from among these so that |B2| ≥ α/2. Continue in this way.

The resulting collection is disjoint by choice and has the property that {5Bj}
covers E. To see this suppose x ∈ E \ ∪j5Bj. There is a ball Bx ⊂ U which was

never chosen. If it was not chosen because it intersected some previously chosen Bj,

then |Bx| ≤ 2|Bj| so Bx ⊂ 5Bj, a contradiction. Therefore it was not chosen because

|Bj| ≤ 2αn for every n. But this implies we have chosen infinitely many disjoint balls

in U with diameters bounded away from zero, another contradiction. Thus {5Bj}
cover E.

Thus
∑

j

Hn(Bj) = 5−n
∑

j

Hn(5Bj) ≥ Hn(E).

Choose a finite subcollection {B1, . . . , BN1} which covers 1
2
5−n of the measure of E.

Let E1 = E \ ∪jBj. Then if ǫ = 1
2
5−n, we get

Hn(E1) ≤ Hn(U \ ∪jBj) ≤ Hn(E) + ǫ− 5−nHn(E) ≤ (1− 1

2
5−n)Hn(E).

Now repeat the argument to E1 (first verify that the balls which are disjoint from the

chosen ones cover E1 in the sense of Vitali), obtaining a second set of disjoint balls

{B1
j } so that if E2 = E1 \ ∪jB1

j , then

Hn(E2) ≤ (1− 5−n/2)Hn(E1) ≤ (1− 5−n/2)2Hn(E).

Continuing in the obvious way gives a disjoint collection of balls which covers almost

every point of E. �
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3. The distortion theorems

In this section we give the “usual” proof of Koebe’s 1
4
theorem, via the area

theorem and deduce the sharp version of the distortion estimates. A weaker version

of this was given in Lemma 5, and was all that was needed in the text.

Recall Green’s theorem,
∫∫

Ω

u∆v + v∆udxdy =

∫

∂Ω

u
∂v

∂n
+ v

∂u

∂n
ds,(56)

where n denotes the inward pointing normal vector of ∂Ω.

COMPLEXV ERSION

We will also use Green’s theorem in the following form:
∫

∂Ω

f(x, y)dx+ g(x, y)dy =

∫∫

Ω

∂g

∂x
− ∂f

∂g
dxdy(57)

and its simple consequence that the area of a region Ω is given by

area(Ω) =
1

2

∫

∂Ω

xdy − ydx =
1

2i

∫
∂Ωzdz.(58)

We now come to some well known (but perhaps not as well known as the results

above) estimates for univalent mappings. The basic idea is to show that a univalent

map f on D is well approximated by its linear Taylor approximation f(z0)+f
′(z0)(z−

z0) in a hyperbolic neighborhood of z0, with estimates that do not depend on f or

z. These so called “distortion estimates” are fundamental to most arguments in

geometric function theory. The first step is to prove:

Theorem 127 (Area theorem). Suppose g(z) = 1
z
+ b0 + b1z+ . . . is univalent in

D. Then
∑∞

n=0 n|bn|2 ≤ 1. In particular, |b1| ≤ 1.

Proof. For 0 < r < 1 let Dr = C \ g(D(0, r)). If z = g(w) and w = eiθ then

dw = iwdθ, so by (58),

area(Dr) =

∫∫

Dr

dxdy =
1

2i

∫

∂Dr

z̄dz =
−1

2i

∫

∂D(0,r)

ḡ(w)g′(w)dw.

To evaluate the right hand side note that

g(z) =
1

z
+ b0 + b1z + . . . ,

g′(z) = 1
1

z2
+ 0 + b1 + 2b2z + . . . ,
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so that∫

|w|=r
ḡ(w)g′(w)dw = i

∫
ḡ(w)g′(w)wdθ

= i

∫
(
1

w̄
+ b̄0 + b̄1w̄ + . . . )(− 1

w
+ b1w + 2b2w + . . . )dθ

= 2πi(− 1

r2
+ |b1|2r2 + 2|b2|r4 + . . . 0

Thus,

0 ≤ area(Dr) = π(
1

r2
−

∞∑

n=1

n|bn|2r2n).

Taking r → 1 gives the result. �

Corollary 128. If f(z) = z +
∑∞

n=2 anz
n is univalent on the unit disk, then

|a2| ≤ 2.

Proof. Let g(z) = (f(z2))−1/2 = 1/z − a2z/2 + . . . . We claim g is one-to-one.

To see this suppose g(z) = g(w). Then f(z2) = f(w2), so z = ±w. Note that g is

odd, so z = w. Since b1 = a2/2, the previous result implies |a2| ≤ 2. �

Theorem 129 (Koebe 1/4 theorem). If f is univalent on D, then

1

4
|f ′(z)|(1− |z|2) ≤ dist(f(z), ∂Ω) ≤ |f ′(z)|(1− |z|2).

Proof. By precomposing with a Möbius transformation and postcomposing by

a linear map, we may assume z = 0, f(0) = 0 and f ′(0) = 1. Then the right hand

inequality is just Schwarz’s lemma applied to f−1. To prove the left hand inequality,

suppose f never equals w in D. Then

g(z) =
wf(z)

w − f(z)
= z + (a2 +

1

w
)z2 + . . . ,

is univalent with f(0) = 0 and f ′(0) = 1. Applying Corollary 128 to both f and g

gives
1

|w| ≤ |a2|+ |a2 +
1

w
| ≤ 2 + 2 = 4.

Thus the omitted point w lies outside D(0, 1/4), as desired. �

Because of Koebe’s theorem we have

dρΩ ≤ dρ̃Ω ≤ 4dρΩ.(59)
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Figure 2. Its easy to compute the quasihyperbolic length of this
curve (which is 3 + 3

2
π), and a little more involved to show it is a

quasi-hyperbolic geodesic, but together these facts give an estimate of
its hyperbolic length.

Lemma 130. Suppose f is univalent on D, f(0) = 0 and f ′(0) = 1. Then

1− |z|
(1 + |z|)3 ≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3 ,

Proof. Fix a point w ∈ D and write the Koebe transform of f ,

F (z) =
f(τ(z))− f(w)

(1− |w|2)f ′(w)
,

where

τ(z) =
z + w

1− w̄z
.

This is univalent, so by Corollary 128, |a2(w)| ≤ 2. Differentiation and setting z = 0

shows

F ′(z) =
f ′(τ(z))τ ′(z)

(1− |w|2)f ′(w)
,

F ′′(z) =
f ′′(τ(z))τ ′(z)2 + f ′(τ(z))τ ′′(z)

(1− |w|2)f ′(w)
,

τ ′(0) = 1− |w|2, τ ′′(0) = −2(1− |w|2),

F ′′(0) =
f ′′(w)

f(w)
(1− |w|2)− 2w̄.

This implies that the coefficient of z2 (as a function of w) in the power series of F is

a2(w) =
1

2
((1− |w|2)f

′′(w)

f ′(w)
− 2w̄).

Using |a2| ≤ 2 and multiplying by w/(1− |w|2), we get

|wf
′′(w)

f ′(w)
− 2|w|2

1− |w|2 | ≤
4|w|

1− |w|2 .
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Thus
2|w|2 − 4|w|
1− |w|2 ≤ wf ′′(w)

f ′(w)
≤ 4|w|+ 2|w|2

1− |w|2 .

Now divide by |w| and use partial fractions,

−1

1− |w| +
−3

1 + |w| ≤
1

|w|
wf ′′(w)

f ′(w)
≤ 3

1− |w| +
1

1 + |w|
Note that

∂

∂r
log |f ′(reiθ)| =

∂

∂r
Re log f ′(z)

= Re
z

|z|
∂

∂z
log f ′(z)

=
1

|z|Re(
zf ′′(z)

f ′(z)
)

Since w = reiθ and f ′(0) = 1, we can integrate to get

log(1− r)− 3 log(1 + r) ≤ log |f ′(reiθ)| ≤ −3 log(1− r) + log(1 + r).

Exponentiating gives the result. �

4. Extremal problems in geometric function theory

The area theorem can be seen as computing

sup
f

|f ′′(0)|,

where the supremum is over all univalent maps of the disk with f(0) = 0 and |f ′(0)| =
1. Geomertric function theory has a long history of dealing with problems of this

type, where we seek to find the infimum or supremum of some quantity over the class

of univalent functions. Here we describe a few such problems (although we shall not

describe the answers in much detail).

DeBrange’s Theorem: One of the most famous problems in geometric function

theory was the Bieberbach conjecture, which was proven by de Brange in 198?. If

f(z) = z + a2z
2 + a3z

3 + . . . , then |an| ≤ n . This is best possible becuase of the

Koebe map from D onto C \ [1
4
,∞).

The Bloch-Landau constant: Suppose Ω is simply connected and f : D → Ω is

conformal. The Koebe 1
4
theorem implies that any simply connected domain contains
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1929 Landau ¿ .566
1956 Riech ¿ .569
1961 Jenkins ¿ .5705
1968 Toppila ¿ .5708
1989 Zhang ¿ .57088
1999 Xiang ¿ .570584
1935 Robinson ¡ .658
1945 Goodman .65647
1985 Bellar and Hummel ¡ .6564155
2008 Carroll and Ortega-Cerdá ¡ .6563937

1973 Metzger 3
197 Brennan some p > 3
1985 Pommerenke 3.399
1999 Bertilsson 3.422

an disk of radius bigger than 1
4
|f ′(0)|. What is the largest constant C so that Ω must

contain a disk of radius C|f ′(0)|? This number is called the schlicht Bloch-Landau

constant. The exact value is still unknown, but here is table that summarizes some

of the known results.

Halls’ lemma: Suppose E ⊂ D is a closed set whose radial projection onto the

unit circle covers the whole circle. What is the largest that ω(0,T,D \ E) can be?

This was solved by Marshall and Sundberg,..

The omitted area problem:

Brennan’s conjecture: Suppose Ω is simply connected and g : Ω → D is

conformal. Then

∫

Ω

|g′|2dxdt = π,

so clearly |g′| ∈ L2(Ω, dxdy). Brennan’s conjecture asks if |g′| ∈ Lp(Ω, dxdy) for all

p < 4. Gehring and Hayman showed this true for p ∈ (4
3
, 2]. The lower bound is

sharp but the upper bound as steadily increased as shown in the following table:

The Carleson-Jones conjecture:

The integral means spectrum:
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5. The strong law of large numbers

In Chapter 5 we used the strong law of large numbers to compute the dimension

of certain subsets of [0, 1] defined in terms of digit frequences. The following is a

self-contained proof of the needed result.

Theorem 131. Let {fn}, n = 1, 2 . . . be a sequence of orthogonal functions on a

probability space (X, dν) and suppose E(f 2) =
∫
|f |2dν ≤ 1. Then

1

n
Sn =

1

n

n∑

k=1

fk → 0,

a.e. (with respect to ν) as n→ ∞.

Proof. We begin with the simple observation that if {gn} is a sequence of func-

tions on a probability space (X, dν) such that
∑

n

∫
|gn|2dν <∞,

then
∑

n |gn|2 <∞ a.e. (dν) and hence gn → 0 a.e. (dν).

Using this, it is easy to verify the law of large numbers (LLN) for n → ∞ along

the sequence of squares. Namely,
∫
(
1

n
Sn)

2dν =
1

n2

∫
|Sn|2dν =

1

n2

n∑

k=1

∫
|fk|2dν ≤ 1

n
.

Therefore if we set gn = 1
n2Sn2 , we have

∫
1

n2
|Sn2|2dν ≤ 1

n2
.

Since the right hand side is summable, the observation above implies gn → 0 a.e.

(dν). This is the same as 1
n2Sn2 → 0, a.e..

To deal with limit over all the integers take m2 ≤ n < (m + 1)2 and set m(n) =

⌊√n⌋. Then
∫

| 1

m2
Sn −

1

m2
Sm2 |2dν =

1

m4

∫
|

n∑

k=m2+1

fk|2dν

=
1

m4

∫ n∑

k=m2+1

|fk|2dν

≤ 2

m3
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since the sum has at most 2m terms, each of size at most 1. Put

gn =
Sn

m(n)2
− Sm(n)2

m(n)2
.

Then since each m = m(n) is associated to at most 2m+ 1 different n’s we get
∞∑

n=1

∫
|gn|2dµ ≤

∞∑

n=1

2

m(n)3
≤

∑

m

(2m+ 1)
2

m3
<∞,

so by the initial observation, gn → 0 a.e. with respect to ν. This implies 1
m(n)2

Sn → 0

a.e., which in turn implies 1
n
Sn → 0 a.e., which is what we wanted. �

This version is sometimes called the strong law of large numbers because it gives

a.e. convergence, as opposed to the weak version which only says that 1
n
Sn converges

to 0 in L2.

As a remark we should note that better estimates for the decay of Sn are possible

if we assume that the functions {fn} are independent with respect to the measure

ν. This means that for any n and any collection of measurable sets {A1, . . . , An} we

have

ν(x ∈ X : fj(x) ∈ Aj, j = 1, . . . , n}) =
n∏

j=1

ν({x ∈ X : fj(x) ∈ Aj}).

Roughly, this says that knowing the values of any of the fj’s at x does not give us

any information about the values of the remaining functions there.

By 1915 Hausdorff had proved that if {fn} ∈ L2(ν) ∩ L1(ν) are independent,

orthonormal (orthogonal and have L2 norm 1) and satisfy
∫
fndν = 0 then

lim
N→∞

1

N
1
2
+ǫ

N∑

n=0

fn(x) = 0, for a.e. x

and for every ǫ > 0. After that Hardy-Littlewood, and independently Khinchin,

proved

lim
N→∞

1√
N logN

N∑

n=0

fn(x) = 0 for a.e. x.

The “final” result, found by Khinchin for a special case in 1928 and proved in general

by Hartman-Wintree in 1941 says

lim sup
N→∞

1√
2N log logN

N∑

n=0

fn(x) = 1 for a.e. x.





APPENDIX D

Background material

1. Real Analysis

Lemma 132. If f is continuous on a compact set, then it is uniformly confinious.

Theorem 133 (Theorem 3.3.8, [?]). Suppose f is C2 on an open set Ω and

suppose K ⊂ Ω is compact. for p, q ∈ K, define

R(p) = f(p)− f(q)−Dff(q)(p− q).

Then

lim
|p−q|→0

R(p)

p− q
= 0.

The convergence is uniform, i.e., for any ǫ > 0, there is an δ > 0 ,so that

p, q ∈ K, |p− q| < δ ⇒ |R(p)| ≤ ǫ|p− q|.

Lemma 134. If fn converges uniformly to f on X then limn→∞
∫
X
fndx =

∫
X
fdx.

Lemma 135. If {fn} satisfy maxX |fn| ≤ an and
∑

n an <∞, then
∫
X

∑∞
n=0 fndx =∑∞

n=0

∫
X
fndx.

2. Topology

let p : E → B be continuous and surjective. An open set U ⊂ B is evenly covered

if the inverse image p−1(U) can be written as a disjoint union of sets Vα so that

p restricted to each Vα is a homeomorphism onto U . If every point b of B has a

neighborhood U that is evenly covered by p, then p is called a covering map.

A space X is simply connected if it is path connected and if its fundamental group

is tirvial, i.e., every closed loop in X can be homotoped to a point.

Theorem 136 (Theorem 11.4.1, [?] ). If U is a bounded planar domain, then the

following are equivalent:

(1) U is simply connected.

357
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(2) C \ U is connected.

Lemma 137 ([?], Lemma 8.4.1). Let p : E → B be a covering map; let p(e0) = b0.

Any path f [0, 1] → B beginning at b0 has a unique lift to a path f̃ in E beginning at

e0.

Lemma 138 (Exercise 8.4.12(a), [?]). Let p : E → B be a convering map; let

p(e0) = b0. Let f : (Y, y0 → (B, b0) be continuous. If Y is locally path connected

and simply connected then f can be lifted uniquely to a continuous map f̃ : (Y, y0),→
(E, e0).
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